cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047434 Numbers that are congruent to {0, 2, 4, 5, 6} mod 8.

This page as a plain text file.
%I A047434 #16 Sep 08 2022 08:44:57
%S A047434 0,2,4,5,6,8,10,12,13,14,16,18,20,21,22,24,26,28,29,30,32,34,36,37,38,
%T A047434 40,42,44,45,46,48,50,52,53,54,56,58,60,61,62,64,66,68,69,70,72,74,76,
%U A047434 77,78,80,82,84,85,86,88,90,92,93,94,96,98,100,101,102
%N A047434 Numbers that are congruent to {0, 2, 4, 5, 6} mod 8.
%H A047434 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A047434 G.f.: x^2*(2+2*x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 07 2011
%F A047434 From _Wesley Ivan Hurt_, Aug 01 2016: (Start)
%F A047434 a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
%F A047434 a(n) = (40*n - 35 + 3*(n mod 5) + 3*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) - 2*((n+4) mod 5))/25.
%F A047434 a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
%p A047434 A047434:=n->8*floor(n/5)+[(0, 2, 4, 5, 6)][(n mod 5)+1]: seq(A047434(n), n=0..100); # _Wesley Ivan Hurt_, Aug 01 2016
%t A047434 Select[Range[0, 100], MemberQ[{0, 2, 4, 5, 6}, Mod[#, 8]] &] (* _Wesley Ivan Hurt_, Aug 01 2016 *)
%o A047434 (Magma) [n : n in [0..150] | n mod 8 in [0, 2, 4, 5, 6]]; // _Wesley Ivan Hurt_, Aug 01 2016
%K A047434 nonn,easy
%O A047434 1,2
%A A047434 _N. J. A. Sloane_