This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047471 #41 Sep 08 2022 08:44:57 %S A047471 1,3,9,11,17,19,25,27,33,35,41,43,49,51,57,59,65,67,73,75,81,83,89,91, %T A047471 97,99,105,107,113,115,121,123,129,131,137,139,145,147,153,155,161, %U A047471 163,169,171,177,179,185,187,193,195,201,203,209,211,217,219,225,227,233 %N A047471 Numbers that are congruent to {1, 3} mod 8. %H A047471 Reinhard Zumkeller, <a href="/A047471/b047471.txt">Table of n, a(n) for n = 1..1000</a> %H A047471 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A047471 G.f.: x*(1+2*x+5*x^2)/((1+x)*(1-x)^2). - _Paul Barry_, Apr 10 2008 %F A047471 a(n) = 4*(n-1)-(-1)^n. - _Rolf Pleisch_, Aug 04 2009 %F A047471 a(n) = 8*n-a(n-1)-12, with a(1)=1. - _Vincenzo Librandi_, Aug 06 2010 %F A047471 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + sqrt(2)*log(sqrt(2)+1)/4. - _Amiram Eldar_, Dec 18 2021 %e A047471 For n=2, a(2) = 8*2-1-12 = 3; %e A047471 For n=3, a(3) = 8*3-3-12 = 9; %e A047471 For n=4, a(4) = 8*4-9-12 = 11. - _Vincenzo Librandi_, Aug 06 2010 %p A047471 A047471:=n->4*n - 4 - (-1)^n; seq(A047471(n), n=1..100); # _Wesley Ivan Hurt_, Jan 30 2014 %t A047471 Table[4 n - 4 - (-1)^n, {n, 100}] (* _Wesley Ivan Hurt_, Jan 30 2014 *) %t A047471 #+{1,3}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,3,9},60] (* _Harvey P. Dale_, Jan 05 2017 *) %o A047471 (Haskell) %o A047471 a047471 n = a047471_list !! (n-1) %o A047471 a047471_list = [n | n <- [1..], mod n 8 `elem` [1,3]] %o A047471 -- _Reinhard Zumkeller_, Dec 29 2012 %o A047471 (Magma) [4*(n-1)-(-1)^n : n in [1..80]]; // _Wesley Ivan Hurt_, Apr 28 2017 %Y A047471 Union of A017077 and A017101. %Y A047471 Cf. A033200 (primes). %K A047471 nonn,easy %O A047471 1,2 %A A047471 _N. J. A. Sloane_ %E A047471 More terms from _Vincenzo Librandi_, Aug 06 2010