This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047484 #28 Sep 08 2022 08:44:57 %S A047484 3,5,7,11,13,15,19,21,23,27,29,31,35,37,39,43,45,47,51,53,55,59,61,63, %T A047484 67,69,71,75,77,79,83,85,87,91,93,95,99,101,103,107,109,111,115,117, %U A047484 119,123,125,127,131,133,135,139,141,143,147,149,151,155,157,159 %N A047484 Numbers that are congruent to {3, 5, 7} mod 8. %H A047484 Vincenzo Librandi, <a href="/A047484/b047484.txt">Table of n, a(n) for n = 1..1000</a> %H A047484 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A047484 G.f.: x*(3+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [_Colin Barker_, May 14 2012] %F A047484 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - _Vincenzo Librandi_, May 17 2012 %F A047484 From _Wesley Ivan Hurt_, Jun 10 2016: (Start) %F A047484 a(n) = (24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9. %F A047484 a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-5. (End) %F A047484 a(n) = 3*n - floor((n-1)/3) - ((n-1) mod 3). - _Wesley Ivan Hurt_, Sep 26 2017 %F A047484 a(n) = 2*(n + floor((n-1)/3)) + 1. - _Wolfdieter Lang_, Sep 11 2021 %p A047484 A047484:=n->(24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047484(n), n=1..100); # _Wesley Ivan Hurt_, Jun 10 2016 %t A047484 Select[Range[0,300], MemberQ[{3,5,7}, Mod[#,8]]&] (* _Vincenzo Librandi_, May 17 2012 *) %o A047484 (Magma) I:=[3, 5, 7, 11]; [n le 4 select I[n] else Self(n-1)+Self(n-3) -Self(n-4): n in [1..70]]; // _Vincenzo Librandi_, May 17 2012 %Y A047484 Cf. A047478, A047529, A047623. %K A047484 nonn,easy %O A047484 1,1 %A A047484 _N. J. A. Sloane_