cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047511 Numbers that are congruent to {0, 2, 4, 6, 7} mod 8.

This page as a plain text file.
%I A047511 #16 Sep 08 2022 08:44:57
%S A047511 0,2,4,6,7,8,10,12,14,15,16,18,20,22,23,24,26,28,30,31,32,34,36,38,39,
%T A047511 40,42,44,46,47,48,50,52,54,55,56,58,60,62,63,64,66,68,70,71,72,74,76,
%U A047511 78,79,80,82,84,86,87,88,90,92,94,95,96,98,100,102,103
%N A047511 Numbers that are congruent to {0, 2, 4, 6, 7} mod 8.
%H A047511 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A047511 a(0)=0, a(1)=2, a(2)=4, a(3)=6, a(4)=7, a(5)=8, a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6. - _Harvey P. Dale_, May 09 2014
%F A047511 From _Wesley Ivan Hurt_, Jul 31 2016: (Start)
%F A047511 G.f.: x^2*(2+2*x+2*x^2+x^3+x^4)/((x-1)^2*(1+x+x^2+x^3+x^4)).
%F A047511 a(n) = a(n-5) + 8 for n > 5.
%F A047511 a(n) = (40*n - 25 + 3*(n mod 5) - 2*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.
%F A047511 a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-4, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
%p A047511 A047511:=n->8*floor(n/5)+[(0, 2, 4, 6, 7)][(n mod 5)+1]: seq(A047511(n), n=0..100); # _Wesley Ivan Hurt_, Jul 31 2016
%t A047511 Select[Range[0,100], MemberQ[{0,2,4,6,7}, Mod[#,8]]&] (* or *) LinearRecurrence[ {1,0,0,0,1,-1}, {0,2,4,6,7,8}, 100] (* _Harvey P. Dale_, May 09 2014 *)
%o A047511 (Magma) [n : n in [0..150] | n mod 8 in [0, 2, 4, 6, 7]]; // _Wesley Ivan Hurt_, Jul 31 2016
%K A047511 nonn,easy
%O A047511 1,2
%A A047511 _N. J. A. Sloane_