This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047528 #22 Mar 19 2024 15:32:02 %S A047528 0,3,7,8,11,15,16,19,23,24,27,31,32,35,39,40,43,47,48,51,55,56,59,63, %T A047528 64,67,71,72,75,79,80,83,87,88,91,95,96,99,103,104,107,111,112,115, %U A047528 119,120,123,127,128,131,135,136,139,143,144,147,151,152,155,159 %N A047528 Numbers that are congruent to {0, 3, 7} mod 8. %H A047528 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A047528 G.f.: x^2*(x+3)*(1+x) / ((1+x+x^2)*(x-1)^2). - _R. J. Mathar_, Jul 10 2015 %F A047528 From _Wesley Ivan Hurt_, Jun 10 2016: (Start) %F A047528 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. %F A047528 a(n) = 8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)). %F A047528 a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End) %p A047528 A047528:=n->8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047528(n), n=1..100); # _Wesley Ivan Hurt_, Jun 10 2016 %t A047528 Select[Range[0, 150], MemberQ[{0, 3, 7}, Mod[#, 8]] &] (* _Wesley Ivan Hurt_, Jun 10 2016 *) %t A047528 LinearRecurrence[{1,0,1,-1},{0,3,7,8},70] (* _Harvey P. Dale_, Jun 12 2019 *) %o A047528 (Magma) [n : n in [0..150] | n mod 8 in [0, 3, 7]]; // _Wesley Ivan Hurt_, Jun 10 2016 %K A047528 nonn,easy %O A047528 1,2 %A A047528 _N. J. A. Sloane_