This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047535 #42 Mar 30 2024 11:38:39 %S A047535 4,7,12,15,20,23,28,31,36,39,44,47,52,55,60,63,68,71,76,79,84,87,92, %T A047535 95,100,103,108,111,116,119,124,127,132,135,140,143,148,151,156,159, %U A047535 164,167,172,175,180,183,188,191,196,199,204,207,212,215,220,223,228,231 %N A047535 Numbers that are congruent to {4, 7} mod 8. %C A047535 Union of A004771 and A017113. %H A047535 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A047535 a(n) = 8*n - a(n-1) - 5 (with a(1)=4). - _Vincenzo Librandi_, Aug 06 2010 %F A047535 a(n) = 4*n -(1 + (-1)^n)/2. - _Arkadiusz Wesolowski_, Sep 18 2012 %F A047535 G.f.: x*(4+3*x+x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Jul 10 2015 %F A047535 From _Franck Maminirina Ramaharo_, Jul 22 2018: (Start) %F A047535 a(n) = A047470(n) + 4. %F A047535 E.g.f.: (2 - exp(-x) + (8*x - 1)*exp(x))/2. (End) %F A047535 Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - _Amiram Eldar_, Dec 11 2021 %p A047535 A047535:=n->4*n - (1 + (-1)^n)/2; seq(A047535(n), n=1..100); # _Wesley Ivan Hurt_, Feb 24 2014 %t A047535 Table[4n - (1 + (-1)^n)/2, {n, 100}] (* _Wesley Ivan Hurt_, Feb 24 2014 *) %o A047535 (Maxima) makelist(4*n - (1 + (-1)^n)/2, n, 1, 100); /* _Franck Maminirina Ramaharo_, Jul 22 2018 */ %o A047535 (Python) %o A047535 def A047535(n): return (n<<2)-(n&1^1) # _Chai Wah Wu_, Mar 30 2024 %Y A047535 Cf. A004771, A017113, A047398, A047461, A047452, A047470, A047524, A047615, A047617. %K A047535 nonn,easy %O A047535 1,1 %A A047535 _N. J. A. Sloane_