This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047642 #18 Sep 07 2023 02:22:14 %S A047642 1,-17,136,-680,2363,-5916,10319,-9656,-8534,57426,-133076,190383, %T A047642 -134810,-140148,657611,-1240116,1461337,-770917,-1171504,4061946, %U A047642 -6678161,7071269,-3376863,-4939180,15963612,-25098443,26265408,-14513461,-10810368,43792034 %N A047642 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^17 in powers of x. %H A047642 Alois P. Heinz, <a href="/A047642/b047642.txt">Table of n, a(n) for n = 17..10000</a> %H A047642 H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440. %H A047642 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %F A047642 a(n) = [x^n]( QPochhammer(-x) - 1 )^17. - _G. C. Greubel_, Sep 07 2023 %p A047642 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A047642 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A047642 end: %p A047642 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A047642 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A047642 end: %p A047642 a:= n-> b(n, 17): %p A047642 seq(a(n), n=17..46); # _Alois P. Heinz_, Feb 07 2021 %t A047642 nmax=46; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] - 1)^17, {x, 0, nmax}], x]//Drop[#, 17] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A047642 With[{k=17}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* _G. C. Greubel_, Sep 07 2023 *) %o A047642 (Magma) %o A047642 m:=80; %o A047642 R<x>:=PowerSeriesRing(Integers(), m); %o A047642 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(17) )); // _G. C. Greubel_, Sep 07 2023 %o A047642 (SageMath) %o A047642 from sage.modular.etaproducts import qexp_eta %o A047642 m=75; k=17; %o A047642 def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k %o A047642 def A047642_list(prec): %o A047642 P.<x> = PowerSeriesRing(QQ, prec) %o A047642 return P( f(k,x) ).list() %o A047642 a=A047642_list(m); a[k:] # _G. C. Greubel_, Sep 07 2023 %o A047642 (PARI) my(x='x+O('x^40)); Vec((eta(-x)-1)^17) \\ _Joerg Arndt_, Sep 07 2023 %Y A047642 Cf. A001482 - A001488, A001490, A047638 - A047641, A047643 - A047649, A047654, A047655, A341243. %K A047642 sign %O A047642 17,2 %A A047642 _N. J. A. Sloane_ %E A047642 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021