This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047643 #21 Sep 07 2023 02:22:11 %S A047643 1,-18,153,-816,3042,-8262,16098,-19278,-1377,72556,-203184,339030, %T A047643 -326961,-53244,940050,-2147916,2975391,-2293488,-911369,6616332, %U A047643 -12906162,15883884,-10936899,-4660974,28758849,-52660134,62518248,-44501988,-7465464,84565242 %N A047643 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^18 in powers of x. %H A047643 Alois P. Heinz, <a href="/A047643/b047643.txt">Table of n, a(n) for n = 18..10000</a> %H A047643 H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440. %H A047643 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %F A047643 a(n) = [x^n]( QPochhammer(-x) - 1 )^18. - _G. C. Greubel_, Sep 07 2023 %p A047643 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A047643 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A047643 end: %p A047643 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A047643 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A047643 end: %p A047643 a:= n-> b(n, 18): %p A047643 seq(a(n), n=18..47); # _Alois P. Heinz_, Feb 07 2021 %t A047643 nmax=47; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^18, {x,0,nmax}], x]//Drop[#, 18] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A047643 With[{k=18}, Drop[CoefficientList[Series[(QPochhammer[-x]-1)^k, {x,0, 75}], x], k]] (* _G. C. Greubel_, Sep 07 2023 *) %o A047643 (Magma) %o A047643 m:=80; %o A047643 R<x>:=PowerSeriesRing(Integers(), m); %o A047643 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(18) )); // _G. C. Greubel_, Sep 07 2023 %o A047643 (SageMath) %o A047643 from sage.modular.etaproducts import qexp_eta %o A047643 m=75; k=18; %o A047643 def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k %o A047643 def A047643_list(prec): %o A047643 P.<x> = PowerSeriesRing(QQ, prec) %o A047643 return P( f(k,x) ).list() %o A047643 a=A047643_list(m); a[k:] # _G. C. Greubel_, Sep 07 2023 %o A047643 (PARI) my(x='x+O('x^35)); Vec((eta(-x)-1)^18) \\ _Joerg Arndt_, Sep 07 2023 %Y A047643 Cf. A001482 - A001488, A001490, A047638 - A047642, A047644 - A047649, A047654, A047655, A341243. %K A047643 sign %O A047643 18,2 %A A047643 _N. J. A. Sloane_ %E A047643 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021