This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047648 #21 Sep 05 2023 12:25:53 %S A047648 1,-23,253,-1771,8832,-33143,95611,-209231,317009,-181401,-686642, %T A047648 2828977,-6099278,8422623,-4906406,-10919687,41968146,-78977952, %U A047648 93297545,-40351223,-117265247,367581446,-606562624,631382751,-207879980,-777907725,2132043121 %N A047648 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^23 in powers of x. %H A047648 Alois P. Heinz, <a href="/A047648/b047648.txt">Table of n, a(n) for n = 23..10000</a> %H A047648 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %H A047648 H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440. %F A047648 a(n) = [x^n]( QPochhammer(-x) - 1 )^23. - _G. C. Greubel_, Sep 05 2023 %p A047648 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A047648 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A047648 end: %p A047648 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A047648 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A047648 end: %p A047648 a:= n-> b(n, 23): %p A047648 seq(a(n), n=23..49); # _Alois P. Heinz_, Feb 07 2021 %t A047648 nmax=49; CoefficientList[Series[(Product[(1-(-x)^j), {j,nmax}] -1)^23, {x,0,nmax}], x]//Drop[#, 23] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A047648 With[{k=23}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* _G. C. Greubel_, Sep 05 2023 *) %o A047648 (Magma) %o A047648 m:=75; %o A047648 R<x>:=PowerSeriesRing(Integers(), m); %o A047648 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(23) )); // _G. C. Greubel_, Sep 05 2023 %o A047648 (SageMath) %o A047648 from sage.modular.etaproducts import qexp_eta %o A047648 m=75; k=23; %o A047648 def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k %o A047648 def A047648_list(prec): %o A047648 P.<x> = PowerSeriesRing(QQ, prec) %o A047648 return P( f(k,x) ).list() %o A047648 a=A047648_list(m); a[k:] # _G. C. Greubel_, Sep 05 2023 %o A047648 (PARI) my(N=44, x='x+O('x^N)); Vec((eta(-x)-1)^23) \\ _Joerg Arndt_, Sep 05 2023 %Y A047648 Cf. A001482 - A001488, A001490, A047638 - A047647, A047649, A047654, A047655, A341243. %K A047648 sign %O A047648 23,2 %A A047648 _N. J. A. Sloane_ %E A047648 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021