cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047652 Primes for which golden mean is a cubic residue.

This page as a plain text file.
%I A047652 #29 Jul 02 2025 16:01:57
%S A047652 139,151,199,331,541,619,661,709,811,829,919,1069,1231,1279,1291,1381,
%T A047652 1471,1579,1699,1999,2161,2221,2239,2251,2281,2371,2389,2521,2659,
%U A047652 2689,2749,3001,3121,3271,3331,3391,3499,3529,3571,3631,3919,4021,4051,4159
%N A047652 Primes for which golden mean is a cubic residue.
%C A047652 Primes of the form x^2 + xy + 34y^2, whose discriminant is -135. - _T. D. Noe_, May 17 2005
%C A047652 Primes of the form x^2 + 135*y^2. - _Arkadiusz Wesolowski_, May 31 2015
%H A047652 Vincenzo Librandi, <a href="/A047652/b047652.txt">Table of n, a(n) for n = 1..1000</a>
%H A047652 E. Lehmer, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/4-2/lehmer.pdf">On the quadratic character of the Fibonacci root</a>, Fib. Quart., 4 (1966), 135-138.
%H A047652 E. Lehmer, <a href="/A001583/a001583.pdf">On the quadratic character of the Fibonacci root</a> (annotated scanned copy)
%F A047652 Primes p that divide Fibonacci((p-1)/3). - _Alexander Adamchuk_, Sep 16 2006
%t A047652 Select[Prime[Range[1000]],IntegerQ[Fibonacci[(#1-1)/3]/#1]&] (* _Alexander Adamchuk_, Sep 16 2006 *)
%Y A047652 Cf. A047650.
%K A047652 nonn,easy
%O A047652 1,1
%A A047652 _N. J. A. Sloane_
%E A047652 More terms from _James Sellers_, Jan 25 2000