cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047666 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 17, 25, 17, 5, 6, 26, 52, 52, 26, 6, 7, 37, 95, 129, 95, 37, 7, 8, 50, 158, 276, 276, 158, 50, 8, 9, 65, 245, 529, 681, 529, 245, 65, 9, 10, 82, 360, 932, 1486, 1486, 932, 360, 82, 10, 11, 101, 507, 1537, 2947, 3653
Offset: 1

Views

Author

Keywords

Crossrefs

Main diagonal is A002002. Rows give A002522, A047667, A047668, ...

Programs

  • Maple
    A047666 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047666(n-1,k-1)+A047666(n,k-1)+A047666(n-1,k); fi; end;
  • Mathematica
    nmax = 11; a[1, k_] := k; a[n_, 1] := n; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n, k-1] + a[n-1, k]; Flatten[ Table[ a[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Feb 10 2012 *)

Formula

T(n, m) = (Sum_{i=1..n-m}(2*i+1)*U(n-i-1, m-1)) + (Sum_{i=1..m} (2*i+1)*U(n-2, m-i)) - U(n-2, m-1) where U(n, m) = A008288(n, m). - Floor van Lamoen, Aug 16 2001