A047702 Numbers that are the sum of 3 but no fewer positive cubes.
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433
Offset: 1
Examples
344 is in A003072, but also in A003325; therefore it is not in here.
References
- C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 352.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- C. G. J. Jacobi, Gesammelte Werke.
- Index entries for sequences related to sums of cubes
Programs
-
Maple
N:= 1000: # to get all terms <= N G3:= series(add(x^(i^3),i=1..floor(N^(1/3)))^3,x,N+1): G2:= series(add(x^(i^3),i=0..floor(N^(1/3)))^2,x,N+1): select(t -> coeff(G3,x,t) > 0 and coeff(G2,x,t) = 0, [$1..N]); # Robert Israel, Dec 12 2016
-
Mathematica
Select[Range[500], (pr = PowersRepresentations[#, 3, 3]; pr != {} && Count[pr, r_ /; (Times @@ r) == 0] == 0) &][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *)