A047708 Diagonal of Sprague-Grundy function for Wyt Queens (Wythoff's game).
0, 2, 1, 6, 7, 8, 3, 5, 4, 16, 14, 15, 10, 9, 11, 20, 13, 21, 12, 25, 17, 18, 19, 30, 31, 38, 35, 36, 22, 23, 43, 45, 48, 49, 24, 26, 27, 28, 29, 33, 60, 32, 61, 57, 66, 37, 63, 34, 64, 67, 40, 39, 41, 42, 82, 44, 74, 79, 47, 46, 87, 86, 50, 95, 96, 52, 101, 51, 102, 53, 54
Offset: 0
References
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
- Howard A. Landman, "A Simple FSM-Based Proof of the Additive Periodicity of the Sprague-Grundy Function of Wythoff's Game", in R. Nowakowski (ed.), More Games of No Chance.
- Howard A. Landman and Tom Ferguson showed that this is a permutation of the integers at the Jul 24-28 2000 MSRI workshop on combinatorial games.
- W. A. Wythoff, "A Modification of the Game of Nim". Nieuw Arch. Wiskunde 8, 199-202, 1907/1909.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..4999
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- A. Dress, A. Flammenkamp and N. Pink, Additive periodicity of the Sprague-Grundy function of certain Nim games, Adv. Appl. Math., 22, pp. 249-270 (1999).
- Rémy Sigrist, PARI program for A047708
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
mex[list_] := mex[list] = Min[Complement[Range[0, Length[list]], list]]; move[Wnim, {a_, b_}] := move[Wnim, {a, b}] = Union[Table[{i, b}, {i, 0, a - 1}], Table[{a, i}, {i, 0, b - 1}], Table[{a - i, b - i}, {i, 1, Min[a, b]}]]; SpragueGrundy[game_, list_] := SpragueGrundy[game, list] = mex[SpragueGrundy[game, #] & /@ move[game, list]]; Table[SpragueGrundy[Wnim, {i, i}], {i, 0, 64}] (* Birkas Gyorgy, Apr 19 2011 *)
-
PARI
See Links section.
Extensions
More terms from Howard A. Landman
Comments