A047709 Low-temperature series in u = exp(-4J/kT) for ferromagnetic susceptibility for the spin-1/2 Ising model on hexagonal lattice.
0, 0, 1, 0, 12, 4, 129, 72, 1332, 960, 13419, 11372, 132900, 126396, 1299851, 1349784, 12592440, 14023944, 121074183, 142818336, 1157026804, 1432470300, 11001347199, 14196860272, 104161648860, 139351826712, 982653092725, 1357030991292, 9241395939636
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Y. Chan, A. J. Guttmann, B. G. Nickel, and J. H. H. Perk, The Ising Susceptibility Scaling Function, J Stat Phys 145 (2011), 549-590; arXiv:1012.5272 [cond-mat.stat-mech], 2010-2020. Gives 642 terms in the file Triangle_u642.txt (divide by 4 to get this sequence).
- J. W. Essam and M. E. Fisher, Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point, J. Chem. Phys., 38 (1963), 802-812.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919-938.
- M. F. Sykes, D. S. Gaunt, J. L. Martin, S. R. Mattingly, and J. W. Essam, Derivation of low-temperature expansions for Ising model. IV. Two-dimensional lattices--temperature grouping, Journal of Mathematical Physics 14 (1973), 1071.
Crossrefs
Extensions
Edited and extended from Chan et al by Andrey Zabolotskiy, Mar 02 2021
Comments