cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047726 Number of different numbers that are formed by permuting digits of n.

This page as a plain text file.
%I A047726 #50 Oct 21 2019 03:24:30
%S A047726 1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,
%T A047726 2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,
%U A047726 2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,3,3,6
%N A047726 Number of different numbers that are formed by permuting digits of n.
%C A047726 The minimum value of a(A171102(n)) is 10*9!. - _Altug Alkan_, Jul 08 2016
%H A047726 A. Dunigan AtLee, <a href="/A047726/b047726.txt">Table of n, a(n) for n = 1..100000</a>.
%F A047726 a(n) << n / (log_10 n)^4.5 by Stirling's approximation. - _Charles R Greathouse IV_, Sep 29 2011
%F A047726 a(n) = A000142(A055642(n))/Product_{k=0..9} A000142(A100910(n,k)). - _Robert Israel_, Jul 08 2016
%e A047726 From 102 we get 102, 120, 210, 201, 12 and 21, so a(102)=6.
%e A047726 From 33950 with 5 digits, one '0', two '3', one '5' and one '9', we get 5! / (1! * 2! * 1! * 1!) = 60 different numbers and a(33950) = 60.  - _Bernard Schott_, Oct 20 2019
%p A047726 f:= proc(n) local L;
%p A047726   L:= convert(n,base,10);
%p A047726   nops(L)!/mul(numboccur(i,L)!,i=0..9);
%p A047726 end proc:
%p A047726 map(f, [$1..1000]); # _Robert Israel_, Jul 08 2016
%t A047726 pd[n_]:=Module[{p=Permutations[IntegerDigits[n]]},Length[Union [FromDigits/@p]]]; pd/@Range[120]  (* _Harvey P. Dale_, Mar 22 2011 *)
%o A047726 (Haskell)
%o A047726 import Data.List (permutations, nub)
%o A047726 a047726 n = length $ nub $ permutations $ show n
%o A047726 -- _Reinhard Zumkeller_, Jul 26 2011
%o A047726 (PARI) a(n)=n=eval(Vec(Str(n)));(#n)!/prod(i=0,9,sum(j=1,#n,n[j]==i)!) \\ _Charles R Greathouse IV_, Sep 29 2011
%o A047726 (PARI) A047726(n)={local(c=Vec(0,10)); apply(d->c[d+1]++, digits(n)); logint(n*10,10)!/prod(i=1,10,c[i]!)} \\ _M. F. Hasler_, Oct 18 2019
%Y A047726 Cf. A055098. Identical to A043537 and A043562 for n<100.
%Y A047726 Cf. A179239. - _Aaron Dunigan AtLee_, Jul 14 2010
%K A047726 nonn,easy,base,nice
%O A047726 1,10
%A A047726 _N. J. A. Sloane_
%E A047726 Corrected by _Henry Bottomley_, Apr 19 2000