This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047775 #22 Apr 27 2024 03:37:18 %S A047775 0,0,0,0,2,5,11,25,66,131,349,708,1911,3856,10604,21597,59961,123266, %T A047775 345060,715198,2015416,4206926,11919257,25032840,71246129,150413234, %U A047775 429750208,911379241,2612614298,5562367173,15991792731,34164355260 %N A047775 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type B. %C A047775 One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type B achiral symmetry and n tetrahedral cells. The plane of symmetry bisects a tetrahedral cell (321); the order of the symmetry group is 2. An achiral polyomino is identical to its reflection. - _Robert A. Russell_, Mar 29 2024 %H A047775 L. W. Beineke and R. E. Pippert, <a href="http://dx.doi.org/10.4153/CJM-1974-006-x">Enumerating dissectable polyhedra by their automorphism groups</a>, Canad. J. Math., 26 (1974), 50-67. %H A047775 S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, <a href="https://doi.org/10.1016/S0022-2860(97)00025-2">Staggered conformers of alkanes: complete solution of the enumeration problem</a>, J. Molec. Struct. 413-414 (1997), 227-239. %H A047775 Robert A. Russell, <a href="/A047775/a047775.txt">Mathematica Graphics3D program for A047775 examples</a> %F A047775 a(n) = (1/2)*(A047749(n) - 2*A047773(n) - 2*A047760(n) - A047753(n) - A047751(n) - A047764(n) - A047765(n)). %F A047775 G.f.: (2 - G(z^4) - G(z^6))/z + (G(z^2) + z*G(z^2)^2 - G(z^4) + z*G(z^4) - z^2*G(z^4)^2 + z^2*G(z^6) + z^2*G(z^12) + z^8*G(z^12)^2) / 2 + z - z*G(z^4)^2 - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^5*G(z^24) + z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - _Robert A. Russell_, Mar 29 2024 %t A047775 Table[If[n<5,0,If[OddQ[n],2Binomial[(3n-1)/2,(n-1)/2]/(n+1)+If[1==Mod[n,4],2Binomial[3(n-1)/4,(n-1)/4]/(n+1),0],Binomial[3n/2,n/2]/(n+1)-If[OddQ[n/2],4Binomial[(3n-2)/4,(n-2)/4],2Binomial[3n/4,n/4]]/(n+2)]/2+If[2==Mod[n,6],3Binomial[(n-2)/2,(n-2)/6]/(n+1)+If[2==Mod[n,12],6Binomial[(n-2)/4,(n-2)/12],12Binomial[n/4-1,(n-8)/12]]/(n+4),0]/2-Switch[Mod[n,4],1,4Binomial[(3n+1)/4,(n-1)/4],3,2Binomial[(3n+3)/4,(n+1)/4],_,0]/(n+3)-Switch[Mod[n,6],1,3Binomial[(n-1)/2,(n-1)/6]/(n+2),2,6Binomial[n/2,(n-2)/6]/(n+4),4,6Binomial[(n-2)/2,(n-4)/6]/(n+2),_,0]-If[5==Mod[n,6],3Binomial[(n+1)/2,(n+1)/6]/(n+4)-Switch[Mod[n,24],5,12Binomial[(n-5)/8,(n-5)/24],17,24Binomial[(n-9)/8,(n-17)/24],_,0]/(n+7),0]],{n,50}] (* _Robert A. Russell_, Mar 29 2024 *) %Y A047775 Cf. A047772. %Y A047775 Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047751 (type K), A047753 (type I), A047760 (type F), A047764 (type Q), A047765 (type P), A047773 (type D). %K A047775 nonn %O A047775 1,5 %A A047775 _N. J. A. Sloane_