cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047777 Primes seen in the decimal expansion of Pi (disregarding the decimal point) that are contiguous, smallest and distinct.

Original entry on oeis.org

3, 14159, 2, 653, 5, 89, 7, 9323
Offset: 1

Views

Author

Keywords

Comments

Sequence A121267 gives the number of digits of a(n) [but see also A229181 for a variant, cf. below]. The terms a(9)-a(11) had been found by Chris Nash in October 1999, and primality of the 3057-digit term a(9) has been proved in September 2002 by J. K. Andersen, who also found the next 5 terms a(12)-a(16) and the bound a(17) > 10^32000, cf. Rivera's web page "Problem 18". - M. F. Hasler, Aug 31 2013
There is a natural variant of the present sequence, using the same definition except for not requiring that all primes have to be distinct. That variant would have the same 3057-digit prime as next term a(9), and therefore have the same displayed terms and not justify a separate entry in the OEIS. However, terms beyond a(9) would be different: instead of a(10) = 73, a(11) = 467 and the 14650-digit PRP a(11), it would be followed by a'(10) = 7, a'(11) = 3 (which cuts a(10) = 73 in two pieces), a'(12) = 467, a'(13) = a'(14) = 2, and a'(15) equal to a 748-digit prime, see the a-file from J.-F. Alcover. Sequence A229181 lists the size of these terms. - M. F. Hasler, Sep 15 2013, updated Jan 18 2019

Examples

			The first digit of Pi = 3.14159... is the prime 3, therefore a(1) = 3.
We discard this digit 3, and look for the first time a chunk of subsequent digits (always starting with the 1 coming right after the previously used 3) would be prime: 1, 14, 141, 1415 are not, but 14159 is. (The single-digit prime '5' was not considered, because we require the primes made from the whole contiguous chunk of digits starting after the previously found prime.) Thus, a(2) = 14159.
Thereafter, we have the single-digit prime a(3) = 2, and then a(4) = 653 (since neither 6 nor 65 is prime). - _M. F. Hasler_, Jan 18 2019
		

Crossrefs

Programs

Extensions

The next term is the 3057-digit prime formed from digits 19 through 3075. It is 846264338327950...708303906979207. - Mark R. Diamond, Feb 22 2000
The two terms after that are 73 and 467. - Jason Earls, Apr 05 2001