This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047780 M4716 #43 Feb 16 2025 08:32:39 %S A047780 0,1,10,57,240,800,2226,5390,11712,23355,43450,76351,127920,205842, %T A047780 319970,482700,709376,1018725,1433322,1980085,2690800,3602676,4758930, %U A047780 6209402,8011200,10229375,12937626,16219035,20166832,24885190,30490050 %N A047780 Number of inequivalent ways to color faces of a cube using at most n colors. %C A047780 Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the faces has cycle index (x1^6 + 3*x1^2*x2^2 + 6*x1^2*x4 + 6*x2^3 + 8*x3^2)/24. %C A047780 a(n) is also the number of inequivalent colorings of the vertices of a regular octahedron using at most n colors. - _José H. Nieto S._, Jan 19 2012 %C A047780 From _Robert A. Russell_, Oct 08 2020: (Start) %C A047780 Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual. %C A047780 There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem. %C A047780 Conjugacy Class Count Even Cycle Indices %C A047780 Identity 1 x_1^6 %C A047780 Vertex rotation 8 x_3^2 %C A047780 Edge rotation 6 x_2^3 %C A047780 Small face rotation 6 x_1^2x_4^1 %C A047780 Large face rotation 3 x_1^2x_2^2 (End) %D A047780 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254 (corrected). %D A047780 N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147). %D A047780 M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246 (the formula given is incorrect but was corrected in the second printing). %D A047780 J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"','Le coloriage du cube' p. 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris. %D A047780 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A047780 Vincenzo Librandi, <a href="/A047780/b047780.txt">Table of n, a(n) for n = 0..1000</a> %H A047780 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolyhedronColoring.html">Polyhedron Coloring</a> %H A047780 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1) %F A047780 a(n) = (n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24 = n+8*C(n, 2)+30*C(n, 3)+68*C(n, 4)+75*C(n, 5)+30*C(n, 6). Each term of the RHS indicates the number of ways to use n colors to color the cube faces (octahedron vertices) with exactly 1, 2, 3, 4, 5, or 6 colors. %F A047780 G.f.: x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7. - _Colin Barker_, Jan 29 2012 %F A047780 a(n) = A198833(n) + A093566(n+1) = 2*A198833(n) - A337898(n) = 2*A093566(n+1) + A337898(n). - _Robert A. Russell_, Oct 08 2020 %t A047780 CoefficientList[Series[x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7,{x,0,33}],x] (* _Vincenzo Librandi_, Apr 27 2012 *) %o A047780 (Magma) [(n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24: n in [1..30]]; // _Vincenzo Librandi_, Apr 27 2012 %Y A047780 Cf. A198833 (unoriented), A093566(n+1) (chiral), A337898 (achiral). %Y A047780 Other elements: A060530 (edges), A000543 (cube vertices, octahedron faces). %Y A047780 Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices). %Y A047780 Row 3 of A325004 (orthoplex vertices, orthotope facets) and A337887 (orthotope faces, orthoplex peaks). %K A047780 nonn,easy %O A047780 0,3 %A A047780 _Jud McCranie_ %E A047780 Corrected version of A006550 and A006529. %E A047780 Entry revised by _N. J. A. Sloane_, Jan 03 2005