cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047806 Duplicate of A008696.

This page as a plain text file.
%I A047806 #27 Feb 18 2023 07:30:03
%S A047806 1,240,190800,16833600,397680720,4630540320,34416204480,187485916800,
%T A047806 814900050000,2975524213680,9486523478880,27053074226880,
%U A047806 70486147972800,169930956669600,384163682797440,820166912933760
%N A047806 Duplicate of A008696.
%C A047806 Original title: Theta series of Niemeier lattice of type A_9^2*D_6.
%F A047806 This series is the q-expansion of 13/18 E_4(z)^3 + 5/18 E_6(z)^2. Cf. A004009, A013973. - _Daniel D. Briggs_, Nov 25 2011
%t A047806 terms = 16; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 13/18 E4[q]^3 + 5/18 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* _Jean-François Alcover_, Jul 06 2017 *)
%Y A047806 Cf. A008696. - _R. J. Mathar_, Oct 18 2008
%K A047806 dead
%O A047806 0,2
%A A047806 _N. J. A. Sloane_
%E A047806 More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 05 2000