This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047859 #39 Jan 03 2023 02:06:35 %S A047859 1,4,11,27,63,143,319,703,1535,3327,7167,15359,32767,69631,147455, %T A047859 311295,655359,1376255,2883583,6029311,12582911,26214399,54525951, %U A047859 113246207,234881023,486539263,1006632959,2080374783,4294967295,8858370047,18253611007,37580963839 %N A047859 a(n) = T(2, n), where T is the array given by A047858. %C A047859 n-th difference of a(n), a(n-1), ..., a(0) is (3, 4, 5, ...). %C A047859 From _Gus Wiseman_, Oct 14 2022: (Start) %C A047859 Also the number of compositions of 2*(n+1) whose maximum part is n+1. These are compositions of 2*(n+1) whose maximum part equals the sum of their remaining parts. For example, the a(0) = 1 through a(2) = 11 compositions are: %C A047859 (1,1) (2,2) (3,3) %C A047859 (1,1,2) (1,2,3) %C A047859 (1,2,1) (1,3,2) %C A047859 (2,1,1) (2,1,3) %C A047859 (2,3,1) %C A047859 (3,1,2) %C A047859 (3,2,1) %C A047859 (1,1,1,3) %C A047859 (1,1,3,1) %C A047859 (1,3,1,1) %C A047859 (3,1,1,1) %C A047859 For length instead of maximum we have A001700. %C A047859 These compositions are ranked by A357708. (End) %H A047859 Vincenzo Librandi, <a href="/A047859/b047859.txt">Table of n, a(n) for n = 0..3000</a> %H A047859 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,4). %F A047859 Main diagonal of the array defined by: T(0, j) = j + 1 for j >= 0, T(i, 0) = i + 1 for i >= 0, T(i, j)= T(i-1, j-1) + T(i-1, j) + 1. a(n) = (n + 4)*2^(n-1) - 1. - _Benoit Cloitre_, Jun 17 2003 %F A047859 a(0) = 1, a(1) = 4, a(2) = 11, a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - _Vincenzo Librandi_, Sep 28 2011 %F A047859 G.f.: (1 - x - x^2)/((1 - x)*(1 - 2*x)^2). - _Colin Barker_, Aug 24 2016 %F A047859 a(n) = A045623(n) - 1. - _Gus Wiseman_, Oct 14 2022 %F A047859 E.g.f.: exp(x)*(exp(x)*(2 + x) - 1). - _Stefano Spezia_, Jan 02 2023 %o A047859 (Magma) [(n+4)*2^(n-1)-1: n in [0..30]]; // _Vincenzo Librandi_, Sep 28 2011 %o A047859 (PARI) Vec((1-x-x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ _Colin Barker_, Aug 24 2016 %Y A047859 A011782 counts compositions. %Y A047859 Cf. A000120, A001511, A001700, A029931, A045623, A047858, A056239, A070939, A357708. %K A047859 nonn,easy %O A047859 0,2 %A A047859 _Clark Kimberling_