cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047893 Number of decimal digits of Euler (Zig) numbers A000364.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 9, 11, 13, 15, 17, 20, 22, 25, 27, 30, 32, 35, 38, 41, 44, 46, 49, 52, 55, 58, 61, 64, 68, 71, 74, 77, 80, 84, 87, 90, 94, 97, 100, 104, 107, 111, 114, 118, 121, 125, 128, 132, 135, 139, 143, 146, 150, 154, 157, 161, 165, 168, 172, 176, 180, 183
Offset: 1

Views

Author

Keywords

Examples

			a(4) = floor(log_10(1385)) + 1 = 4, E(4) = 1385, the 4th Euler number.
		

References

  • J. Peters and J. Stein, Mathematische Tafeln, Revised Russian Edition, Moscow, 1968.

Crossrefs

Cf. A000364, A034971, A034972, A000182 (tangent numbers), A047894.

Programs

  • Mathematica
    a[n_] := IntegerLength[EulerE[2*n]]; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    a(n) = #Str(subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1));

Formula

a(n) = A055642(A000364(n)) = floor(log_10(|E(2n)|)) + 1 for n >=2, where E is Euler's E function.

Extensions

a(1) corrected by Amiram Eldar, Mar 20 2025

A047895 Difference of decimal orders of Euler and Tangential numbers: deviations of Zigs and Zags.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Keywords

References

  • Peters, J. and Stein, J., Matematische Tafeln. Revised Russian Edition, 1968, Moscow.

Crossrefs

Showing 1-2 of 2 results.