A047913 Triangle of numbers a(n,k) = number of partitions of k such that k = n + n_1 + n_2 + ... + n_t where n_1 <= 2n and n_{i+1} <= 2n_i for all i.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 9, 1, 1, 2, 4, 7, 12, 16, 1, 1, 2, 4, 7, 13, 22, 28, 1, 1, 2, 4, 7, 13, 24, 39, 50, 1, 1, 2, 4, 7, 13, 24, 42, 70, 89, 1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159, 1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 2; 1, 1, 2, 3; 1, 1, 2, 4, 5; 1, 1, 2, 4, 7, 9; 1, 1, 2, 4, 7, 12, 16; 1, 1, 2, 4, 7, 13, 22, 28; 1, 1, 2, 4, 7, 13, 24, 39, 50; 1, 1, 2, 4, 7, 13, 24, 42, 70, 89; 1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159; 1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285; ... Rows approach A002843. - _Joerg Arndt_, Jan 15 2024
Links
- H. Minc, A problem in partitions: Enumeration of elements of a given degree in the free commutative entropic cyclic groupoid, Proc. Edinburgh Math. Soc. (2) 11 1958/1959 223-224.
Crossrefs
Programs
-
Mathematica
a[n_, n_] = 1; a[n_?Positive, k_?Positive] := a[n, k] = Sum[a[i, k-n], {i, 1, 2*n}]; a[n_, k_] = 0; Table[a[n, k], {k, 1, 12}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Oct 21 2013 *)
Formula
a(n, n)=1, a(n, k) = Sum_{i=1..2n} a(i, k-n).
Comments