A047923 Main diagonal of array in A038150.
1, 6, 29, 97, 343, 1131, 3338, 10336, 29644, 88555, 260497, 728358, 2103284, 6020698, 16594432, 46969365, 128670281, 361020986, 1008411198, 2742388946, 7613161908, 20632925370, 56988914979, 156977658446, 423559114311
Offset: 0
Links
- A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
- A. S. Fraenkel, Arrays, numeration systems and Frankenstein games, Theoret. Comput. Sci. 282 (2002), 271-284; preprint.
Programs
-
Mathematica
max = 24; t[0, 0] = 1; t[n_, 1] := t[n, 1] = 2*t[n, 0]+n+1; t[n_, 0] := t[n, 0] = Catch[For[ u = Table[t[m, k], {m, 0, n-1}, {k, 0, max - m}] // Flatten // Union; k = 1, k <= n*(n+1)/2+1 , k++, If[u[[k]] != k, Throw[k]]]]; t[n_, k_] := t[n, k] = 3*t[n, k-1] - t[n, k-2] ; a[n_] := t[n, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jan 02 2013 *)
Formula
a(n) = F(2n)*n + F(2n+1)*A026351(n). - Charlie Neder, Feb 07 2019
Extensions
More terms from Naohiro Nomoto, Jun 07 2001