This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047924 #43 Mar 28 2025 10:28:13 %S A047924 3,6,11,14,19,24,27,32,35,40,45,48,53,58,61,66,69,74,79,82,87,90,95, %T A047924 100,103,108,113,116,121,124,129,134,137,142,147,150,155,158,163,168, %U A047924 171,176,179,184,189,192,197,202,205,210,213,218,223,226,231,234,239 %N A047924 a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio. %C A047924 2nd column of array in A038150. %C A047924 Apart from the first term also the second column of A126714; see also A223025. - _Casey Mongoven_, Mar 11 2013 %D A047924 Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138. %H A047924 Vincenzo Librandi, <a href="/A047924/b047924.txt">Table of n, a(n) for n = 0..1000</a> %H A047924 Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, <a href="https://arxiv.org/abs/2503.19696">Fibonacci-like partitions and their associated piecewise-defined permutations</a>, arXiv:2503.19696 [math.CO], 2025. See p. 4. %H A047924 Aviezri S. Fraenkel, <a href="https://doi.org/10.1016/S0304-3975(00)00062-1">Recent results and questions in combinatorial game complexities</a>, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288. %H A047924 Aviezri S. Fraenkel, <a href="https://doi.org/10.1016/S0304-3975(01)00070-6">Arrays, numeration systems and Frankenstein games</a>, Theoret. Comput. Sci. 282 (2002), 271-284; <a href="http://www.wisdom.weizmann.ac.il/~fraenkel/Papers/ans1.ps">preprint</a>. %H A047924 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/32-4/kimberling.pdf">The first column of an interspersion</a>, The Fibonacci Quarterly 32 (1994), 301-315. %p A047924 A001950 := proc(n) %p A047924 local phi; %p A047924 phi := (1+sqrt(5))/2 ; %p A047924 floor(n*phi^2) ; %p A047924 end proc: %p A047924 A000201 := proc(n) %p A047924 local phi; %p A047924 phi := (1+sqrt(5))/2 ; %p A047924 floor(n*phi) ; %p A047924 end proc: %p A047924 A047924 := proc(n) %p A047924 1+A001950(1+A000201(n)) ; %p A047924 end proc: # _R. J. Mathar_, Mar 20 2013 %t A047924 A[n_] := Floor[n*GoldenRatio]; B[n_] := Floor[n*GoldenRatio^2]; a[n_] := B[A[n]+1]+1; Table[a[n], {n, 0, 56}] (* _Jean-François Alcover_, Feb 11 2014 *) %o A047924 (Python) %o A047924 from mpmath import * %o A047924 mp.dps=100 %o A047924 import math %o A047924 def A(n): return int(math.floor(n*phi)) %o A047924 def B(n): return int(math.floor(n*phi**2)) %o A047924 def a(n): return B(A(n) + 1) + 1 # _Indranil Ghosh_, Apr 25 2017 %o A047924 (Python) %o A047924 from math import isqrt %o A047924 def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1 # _Chai Wah Wu_, Aug 25 2022 %Y A047924 Cf. A007066. %K A047924 nonn,nice,easy %O A047924 0,1 %A A047924 _N. J. A. Sloane_ %E A047924 More terms from _Naohiro Nomoto_, Jun 08 2001 %E A047924 New description from _Aviezri S. Fraenkel_, Aug 03 2007