A038150 Array of numbers used in exotic ternary numeration system, read by antidiagonals.
1, 2, 3, 4, 6, 8, 5, 11, 16, 21, 7, 14, 29, 42, 55, 9, 19, 37, 76, 110, 144, 10, 24, 50, 97, 199, 288, 377, 12, 27, 63, 131, 254, 521, 754, 987, 13, 32, 71, 165, 343, 665, 1364, 1974, 2584, 15, 35, 84, 186, 432, 898, 1741, 3571, 5168, 6765, 17, 40, 92, 220, 487
Offset: 0
Examples
Top left corner of array: 1, 3, 8, 21, 55, ... 2, 6, 16, 42, 110, ... 4, 11, 29, 76, 199, ... 5, 14, 37, 97, 254, ...
Links
- A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
- A. S. Fraenkel, Arrays, numeration systems and Frankenstein games, Theoret. Comput. Sci. 282 (2002), 271-284; preprint.
Crossrefs
Programs
-
Mathematica
t[n_, 1] := Floor[(n - 1) GoldenRatio] + 1; t[n_, j_] := Floor[ GoldenRatio^2 t[n, j - 1]] + 1; Table[ t[n - m + 1, m], {n, 11}, {m, n}] // Flatten (* Birkas Gyorgy, Apr 15 2011; modified by Robert G. Wilson v, Apr 15 2011 *)
Formula
For n >= 0, A_0^n is the least nonnegative integer not in {A_j^n: 0 <= i < n, j >= 0, A_1^n = 2A_0^n + n, A_j^n = 3A_{j-1}^n - A_{j-2}^n (j >= 2).
a(n,k) = F(2k)*n + F(2k+1)*A026351(n). - Charlie Neder, Feb 07 2019
Extensions
More terms from Naohiro Nomoto, Jun 07 2001
Comments