cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038150 Array of numbers used in exotic ternary numeration system, read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 11, 16, 21, 7, 14, 29, 42, 55, 9, 19, 37, 76, 110, 144, 10, 24, 50, 97, 199, 288, 377, 12, 27, 63, 131, 254, 521, 754, 987, 13, 32, 71, 165, 343, 665, 1364, 1974, 2584, 15, 35, 84, 186, 432, 898, 1741, 3571, 5168, 6765, 17, 40, 92, 220, 487
Offset: 0

Views

Author

Keywords

Examples

			Top left corner of array:
  1,  3,  8, 21,  55, ...
  2,  6, 16, 42, 110, ...
  4, 11, 29, 76, 199, ...
  5, 14, 37, 97, 254, ...
		

Crossrefs

Rows give A001906, A025169, A002878.
Columns give A026351, A047924, A047925.
Main diagonal gives A047923.

Programs

  • Mathematica
    t[n_, 1] := Floor[(n - 1) GoldenRatio] + 1; t[n_, j_] := Floor[ GoldenRatio^2 t[n, j - 1]] + 1; Table[ t[n - m + 1, m], {n, 11}, {m, n}] // Flatten (* Birkas Gyorgy, Apr 15 2011; modified by Robert G. Wilson v, Apr 15 2011 *)

Formula

For n >= 0, A_0^n is the least nonnegative integer not in {A_j^n: 0 <= i < n, j >= 0, A_1^n = 2A_0^n + n, A_j^n = 3A_{j-1}^n - A_{j-2}^n (j >= 2).
a(n,k) = F(2k)*n + F(2k+1)*A026351(n). - Charlie Neder, Feb 07 2019

Extensions

More terms from Naohiro Nomoto, Jun 07 2001

A223025 Gives the column number which contains n in the dual Wythoff array (beginning the column count at 1).

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 1, 3, 2, 1, 6, 2, 1, 4, 1, 3, 2, 1, 7, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 8, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 9, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2
Offset: 1

Views

Author

Casey Mongoven, Mar 11 2013

Keywords

Examples

			a(23) = 3 because 23 is in the third column of the dual Wythoff array (see A126714).
		

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

A383671 The limiting word that starts with 0, as a sequence, generated by s(0) = 0, s(1) = 12, s(n) = concatenation of s(n - 2) and s(n - 1).

Original entry on oeis.org

0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2
Offset: 0

Views

Author

Clark Kimberling, May 15 2025

Keywords

Comments

There are two distinct limiting words generated by s(0) = 0, s(1) = 12, s(n) = s(n - 2)s(n - 1). This one is given by s(2n) for n>=0; the other, given by s(2n-1) for n>=0, is 1201201212012... In both limiting words, the length of the n-th initial subword is A000045(n+1), for n>=1.

Examples

			Initial subwords: s(0)=0, s(1)=12, s(2)=012, s(3)=12012, s(4)= 01212012, of lengths 1, 2, 3, 5, 8 (Fibonacci numbers).
		

Crossrefs

Cf. A000045, A003849, A047924 (positions of 0), A026356 (positions of 1), A022413 (positions of 2), A383670.

Programs

  • Mathematica
    s[0] = "0"; s[1] = "12"; s[n_] := StringJoin[s[n - 2], s[n - 1]];
    Join[{0}, IntegerDigits[FromDigits[s[10]]]]
  • Python
    from math import isqrt
    def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1
    def A026356(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n
    def A383671(n):
        def bsearch(f, n):
            kmin, kmax = 0, 1
            while f(kmax) <= n:
                kmax <<= 1
            kmin = kmax>>1
            while True:
                kmid = kmax+kmin>>1
                if f(kmid) > n:
                    kmax = kmid
                else:
                    kmin = kmid
                if kmax-kmin <= 1:
                    break
            return kmin
        if n<3: return n
        for i, f in enumerate((A047924, A026356)):
            if f(bsearch(f,n+1))==n+1: return i
        return 2 # Chai Wah Wu, May 21 2025
Showing 1-3 of 3 results.