This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047934 #21 Jul 02 2025 16:01:57 %S A047934 2,3,5,11,29,59,101,107,149,151,179,197,227,251,269,271,337,347,367, %T A047934 419,461,659,733,821,827,971,991,1019,1021,1061,1091,1229,1277,1301, %U A047934 1427,1451,1619,1667,1787,1877,1931,1949,1997,2027,2141,2237,2267,2309 %N A047934 Consider primes p with least positive primitive root g such that q=p+g is next prime after p; sequence gives values of p. %D A047934 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864. %H A047934 T. D. Noe, <a href="/A047934/b047934.txt">Table of n, a(n) for n=1..1000</a> %H A047934 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A047934 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a> %e A047934 11 has primitive root 2 and 11+2 = 13 is prime after 11, so 11 is in sequence. %t A047934 ok[p_] := (p + PrimitiveRoot[p] == NextPrime[p]); Select[Prime[Range[343]], ok] (* _Jean-François Alcover_, May 03 2011 *) %t A047934 Transpose[Select[Partition[Prime[Range[400]],2,1],#[[2]]-#[[1]] == PrimitiveRoot[ #[[1]]]&]][[1]] (* _Harvey P. Dale_, Oct 08 2012 *) %Y A047934 Cf. A047933, A047935. See also A001918. %K A047934 nice,nonn %O A047934 1,1 %A A047934 _Felice Russo_ %E A047934 More terms from _James Sellers_, Dec 22 1999