cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047936 Primes whose smallest positive primitive root (A001918) is not prime.

This page as a plain text file.
%I A047936 #27 Jul 02 2025 16:01:57
%S A047936 2,41,109,151,229,251,271,313,337,367,409,439,733,761,971,991,1021,
%T A047936 1031,1069,1289,1297,1303,1429,1471,1489,1759,1783,1789,1811,1871,
%U A047936 1873,1879,2137,2411,2441,2551,2749,2791,2971,3001,3061,3079,3109,3221,3229
%N A047936 Primes whose smallest positive primitive root (A001918) is not prime.
%C A047936 Subsequence of A222717 = primes whose smallest positive quadratic nonresidue is not a primitive root. (Proof. If p is not in A222717, then the smallest positive quadratic nonresidue of p is a primitive root g. Since the smallest positive quadratic nonresidue is always a prime, g is prime. But since all primitive roots are quadratic nonresidues, g is the smallest positive primitive root of p. Hence p is not in A047936.) - _Jonathan Sondow_,  Mar 13 2013.
%H A047936 Charles R Greathouse IV, <a href="/A047936/b047936.txt">Table of n, a(n) for n = 1..10000</a>
%H A047936 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%t A047936 lst={}; Do[p=Prime[n]; pr=PrimitiveRoot[p]; If[pr>1&&!PrimeQ[pr], AppendTo[lst, p]], {n, 7!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 24 2009 *)
%t A047936 Select[Prime[Range[500]],!PrimeQ[PrimitiveRoot[#]]&] (* _Harvey P. Dale_, Oct 24 2011 *)
%o A047936 (PARI) select(p->!isprime(lift(znprimroot(p))),primes(999)) \\ reverse order of arguments if using an old version of GP
%o A047936 \\ _Charles R Greathouse_ IV, Oct 24 2011
%Y A047936 Cf. A222717, A223036.
%K A047936 nonn,easy
%O A047936 1,1
%A A047936 _Felice Russo_
%E A047936 More terms from _James Sellers_, Dec 22 1999