cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047972 Distance of n-th prime to nearest square.

This page as a plain text file.
%I A047972 #36 Apr 27 2022 19:06:00
%S A047972 1,1,1,2,2,3,1,3,2,4,5,1,5,6,2,4,5,3,3,7,8,2,2,8,3,1,3,7,9,8,6,10,7,5,
%T A047972 5,7,12,6,2,4,10,12,5,3,1,3,14,2,2,4,8,14,15,5,1,7,13,15,12,8,6,4,17,
%U A047972 13,11,7,7,13,14,12,8,2,6,12,18,17,11,3,1,9,19,20,10,8,2,2,8,16,20,21
%N A047972 Distance of n-th prime to nearest square.
%C A047972 Conjecture: a(n) < sqrt(prime(n)) and lim_{n->infinity} a(n)/sqrt(prime(n)) = 1, where prime(n) is the n-th prime. - _Ya-Ping Lu_, Nov 29 2021
%H A047972 T. D. Noe, <a href="/A047972/b047972.txt">Table of n, a(n) for n = 1..1000</a>
%F A047972 For each prime, find the closest square (preceding or succeeding); subtract, take absolute value.
%e A047972 For 13, 9 is the preceding square, 16 is the succeeding. 13-9 = 4, 16-13 is 3, so the distance is 3.
%t A047972 a[n_] := (p = Prime[n]; ns = p+1; While[ !IntegerQ[ Sqrt[ns++]]]; ps = p-1; While[ !IntegerQ[ Sqrt[ps--]]]; Min[ ns-p-1, p-ps-1]); Table[a[n], {n, 1, 90}] (* _Jean-François Alcover_, Nov 18 2011 *)
%t A047972 Table[Apply[Min, Abs[p - Through[{Floor, Ceiling}[Sqrt[p]]]^2]], {p, Prime[Range[90]]}] (* _Jan Mangaldan_, May 07 2014 *)
%t A047972 Min[Abs[#-Through[{Floor,Ceiling}[Sqrt[#]]]^2]]&/@Prime[Range[100]] (* More concise version of program immediately above *) (* _Harvey P. Dale_, Dec 04 2019 *)
%t A047972 Rest[Table[With[{s=Floor[Sqrt[p]]},Abs[p-Nearest[Range[s-2,s+2]^2,p]]],{p,Prime[ Range[ 100]]}]//Flatten] (* _Harvey P. Dale_, Apr 27 2022 *)
%o A047972 (Python)
%o A047972 from sympy import integer_nthroot, prime
%o A047972 def A047972(n):
%o A047972     p = prime(n)
%o A047972     a = integer_nthroot(p,2)[0]
%o A047972     return min(p-a**2,(a+1)**2-p) # _Chai Wah Wu_, Apr 03 2021
%Y A047972 Cf. A047973.
%K A047972 easy,nonn,nice
%O A047972 1,4
%A A047972 _Enoch Haga_, Dec 11 1999