This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048055 #42 May 22 2025 10:21:34 %S A048055 532,945,2624,5704,6536,229648,497696,652970,685088,997408,1481504, %T A048055 11177984,32869504,52813084,132612224,224841856,2140668416,2404135424, %U A048055 2550700288,6469054976,9367192064,19266023936,23414463358,31381324288,45812547584,55620289024 %N A048055 Numbers k such that (sum of the nonprime proper divisors of k) - (sum of prime divisors of k) = k. %C A048055 From _Peter Luschny_, Dec 14 2009: (Start) %C A048055 A term of this sequence is a Zumkeller number (A083207) since the set of its divisors can be partitioned into two disjoint parts so that the sums of the two parts are equal. %C A048055 1 + sigma*(k) = sigma'(k) + k %C A048055 sigma*(k) := Sum_{1 < d < k, d|k, d not prime}, (A060278), %C A048055 sigma'(k) := Sum_{1 < d < k, d|k, d prime}, (A105221). (End) %H A048055 Donovan Johnson, <a href="/A048055/b048055.txt">Table of n, a(n) for n = 1..34</a> (terms <= 10^12) %H A048055 Donovan Johnson, <a href="/A048055/a048055.txt">82 terms > 10^12</a>. %H A048055 Peter Luschny, <a href="http://www.luschny.de/math/seq/ZumkellerNumbers.html"> Zumkeller Numbers</a>. %e A048055 532 = 1 - 2 + 4 - 7 + 14 - 19 + 28 + 38 + 76 + 133 + 266. %p A048055 with(numtheory): A048055 := proc(n) local k; %p A048055 if sigma(n)=2*(n+add(k,k=select(isprime,divisors(n)))) %p A048055 then n else NULL fi end: seq(A048055(i),i=1..7000); %p A048055 # _Peter Luschny_, Dec 14 2009 %t A048055 zummableQ[n_] := DivisorSigma[1, n] == 2*(n + Total[Select[Divisors[n], PrimeQ]]); n = 2; A048055 = {}; While[n < 10^6, If[zummableQ[n], Print[n]; AppendTo[A048055, n]]; n++]; A048055 (* _Jean-François Alcover_, Dec 07 2011, after _Peter Luschny_ *) %o A048055 (Haskell) %o A048055 import Data.List (partition) %o A048055 a048055 n = a048055_list !! (n-1) %o A048055 a048055_list = [x | x <- a002808_list, %o A048055 let (us,vs) = partition ((== 1) . a010051) $ a027751_row x, %o A048055 sum us + x == sum vs] %o A048055 -- _Reinhard Zumkeller_, Apr 05 2013 %o A048055 (Python) %o A048055 from sympy import divisors, primefactors %o A048055 A048055 = [] %o A048055 for n in range(1,10**4): %o A048055 s = sum(divisors(n)) %o A048055 if not s % 2 and 2*n <= s and (s-2*n)/2 == sum(primefactors(n)): %o A048055 A048055.append(n) # _Chai Wah Wu_, Aug 20 2014 %Y A048055 Cf. A083207, A105221, A060278, A000203, A027751, A010051, A002808. %K A048055 nonn,nice %O A048055 1,1 %A A048055 _Naohiro Nomoto_ %E A048055 a(15)-a(19) from _Donovan Johnson_, Dec 07 2008 %E A048055 a(20)-a(24) from _Donovan Johnson_, Jul 06 2010 %E A048055 a(25)-a(26) from _Donovan Johnson_, Feb 09 2012