cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048059 Primes of the form k^2 + k + 11.

This page as a plain text file.
%I A048059 #27 Apr 21 2025 10:46:17
%S A048059 11,13,17,23,31,41,53,67,83,101,167,193,251,283,317,353,431,563,661,
%T A048059 823,881,941,1201,1493,1571,1733,2081,2267,2663,2767,3203,3433,3671,
%U A048059 3793,3917,4567,4703,5413,5711,6173,6491,6653,6983,7151,7321,8753,8941,9323,10111
%N A048059 Primes of the form k^2 + k + 11.
%C A048059 From _Peter Bala_, Apr 15 2018: (Start)
%C A048059 The polynomial P(n) := n^2 + n + 11 takes distinct prime values for the 10 consecutive integers n = 0 to 9. It follows that the polynomial P(n-10) = (n - 10)^2 + (n - 10) + 11 takes prime values for the 20 consecutive integers n = 0 to 19, consisting of the 10 primes above each taken twice. We note two consequences of this fact.
%C A048059 1) The polynomial P(2*n-10) = 4*n^2 - 38*n + 101 also takes prime values for the 10 consecutive integers n = 0 to 9.
%C A048059 2)The polynomial P(3*n-10) = 9*n^2 - 57*n + 101 takes prime values for the 7 consecutive integers n = 0 to 6 (= floor(19/3)). In addition, calculation shows that P(3*n-10) also takes prime values for n from -3 to -1. Equivalently put, the polynomial P(3*n-19) = 9*n^2 - 111*n + 353 takes prime values for the 10 consecutive integers n = 0 to 9. Cf. A007635 and A005846. (End)
%H A048059 Vincenzo Librandi, <a href="/A048059/b048059.txt">Table of n, a(n) for n = 1..10000</a>
%H A048059 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>.
%F A048059 a(n) = A048058(A048097(n)). - _Elmo R. Oliveira_, Apr 20 2025
%t A048059 lst={}; Do[p=n^2+n+11; If[PrimeQ[p], AppendTo[lst,p]], {n,0,5*5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2009 *)
%t A048059 Select[Table[n^2+n+11, {n,0,600}], PrimeQ] (* _Vincenzo Librandi_, Dec 07 2011 *)
%o A048059 (Magma) [ a: n in [0..200] | IsPrime(a) where a is n^2+n+11 ]; // _Vincenzo Librandi_, Dec 07 2011
%Y A048059 Cf. A005846, A007635, A048058, A048097, A160548.
%K A048059 nonn,easy
%O A048059 1,1
%A A048059 _N. J. A. Sloane_