A048140 Number of planar partitions of n, but partitions that are mirror images of each other (when regarded as 3-D objects) are counted only once.
1, 2, 4, 8, 14, 27, 47, 86, 149, 261, 444, 760, 1269, 2119, 3486, 5711, 9247, 14906, 23800, 37816, 59622, 93528, 145759, 226071, 348612, 535131, 817280, 1242824, 1881310, 2836377, 4258509, 6369669, 9491142, 14092537, 20851146, 30749471
Offset: 1
Keywords
Examples
n=3 gives 4 forms: {{3}}; {{1,1,1}}={{1},{1},{1}}; {{2,1}}={{2},{1}}; {{1,1},{1}}.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
terms = 100; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[ (terms+1)/2]}] + O[x]^(terms+1); A005987 = CoefficientList[s, x]; a[n_] := (a219[n] + A005987[[n+1]])/2; a /@ Range[terms] (* Jean-François Alcover, Dec 28 2019 *)
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Comments