This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048152 #46 Feb 16 2025 08:32:39 %S A048152 0,1,0,1,1,0,1,0,1,0,1,4,4,1,0,1,4,3,4,1,0,1,4,2,2,4,1,0,1,4,1,0,1,4, %T A048152 1,0,1,4,0,7,7,0,4,1,0,1,4,9,6,5,6,9,4,1,0,1,4,9,5,3,3,5,9,4,1,0,1,4, %U A048152 9,4,1,0,1,4,9,4,1,0,1,4,9,3,12,10,10,12,3,9,4,1,0 %N A048152 Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1. %H A048152 T. D. Noe, <a href="/A048152/b048152.txt">Rows n = 1..100 of triangle, flattened</a> %H A048152 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuadraticResidue.html">Quadratic Residue</a> %F A048152 T(n,k) = A133819(n,k) mod n, k = 1..n. - _Reinhard Zumkeller_, Apr 29 2013 %F A048152 T(n,k) = (T(n,k-1) + (2k+1)) mod n. - _Andrés Ventas_, Apr 06 2021 %e A048152 Rows: %e A048152 0; %e A048152 1, 0; %e A048152 1, 1, 0; %e A048152 1, 0, 1, 0; %e A048152 1, 4, 4, 1, 0; %e A048152 1, 4, 3, 4, 1, 0; %t A048152 Flatten[Table[PowerMod[k,2,n],{n,15},{k,n}]] (* _Harvey P. Dale_, Jun 20 2011 *) %o A048152 (Haskell) %o A048152 a048152 n k = a048152_tabl !! (n-1) !! (k-1) %o A048152 a048152_row n = a048152_tabl !! (n-1) %o A048152 a048152_tabl = zipWith (map . flip mod) [1..] a133819_tabl %o A048152 -- _Reinhard Zumkeller_, Apr 29 2013 %Y A048152 Cf. A060036. %Y A048152 Cf. A225126 (central terms). %Y A048152 Cf. A070430 (row 5), A070431 (row 6), A053879 (row 7), A070432 (row 8), A008959 (row 10), A070435 (row 12), A070438 (row 15), A070422 (row 20). %Y A048152 Cf. A046071 (in ascending order, without zeros and duplicates). %Y A048152 Cf. A063987 (for primes, in ascending order, without zeros and duplicates). %K A048152 nonn,tabl,nice,easy %O A048152 1,12 %A A048152 _Clark Kimberling_