cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048153 a(n) = Sum_{k=1..n} (k^2 mod n).

This page as a plain text file.
%I A048153 #53 Mar 14 2025 21:33:10
%S A048153 0,1,2,2,10,13,14,12,24,45,44,38,78,77,70,56,136,129,152,130,182,209,
%T A048153 184,148,250,325,288,294,406,365,372,304,484,561,490,402,666,665,572,
%U A048153 540,820,805,860,726,840,897,846,680,980,1125,1156,1170,1378,1305,1210
%N A048153 a(n) = Sum_{k=1..n} (k^2 mod n).
%C A048153 See A048152 for the array T[n,k] = k^2 mod n.
%C A048153 Starting with a(2)=1 each 4th term is odd: a(n=2+4*k) = 1, 13, 45, 77, 129, 209, 325, 365, ... - _Zak Seidov_, Apr 22 2009
%C A048153 Positions of squares in A048153: 1, 2, 33, 51, 69, 105, 195, 250, 294, 1250, 4913, 9583, 13778, 48778, 65603, 83521.
%C A048153 Corresponding values of squares are: {0, 1, 22, 34, 46, 70, 130, 175, 203, 875, 3468, 6734, 9711, 34481, 46308, 58956}^2 = {0, 1, 484, 1156, 2116, 4900, 16900, 30625, 41209, 765625, 12027024, 45346756, 94303521, 1188939361, 2144430864, 3475809936}. - _Zak Seidov_, Nov 02 2011
%C A048153 For n > 1 also row sums of A060036. - _Reinhard Zumkeller_, Apr 29 2013
%C A048153 Conjecture: a(n) <= (n^2-1)/2. - _Aspen A.M. Meissner_, Mar 06 2025
%H A048153 Zak Seidov, <a href="/A048153/b048153.txt">Table of n, a(n) for n = 1..10000</a>
%F A048153 a(n) == n*(n+1)*(2n+1)/6 (mod n). - _Charles R Greathouse IV_, Dec 28 2011
%F A048153 a(n) == n*(n-1)*(2n-1)/6 (mod n). - _Chai Wah Wu_, Jun 02 2024
%F A048153 a(n) mod n = A215573(n). - _Alois P. Heinz_, Jun 03 2024
%e A048153 a(5) = 1^2 + 2^2 + (3^2 mod 5) + (4^2 mod 5) + (5^2 mod 5) = 1 + 4 + 4 + 1 + 0 = 10. (It is easily seen that the last term, n^2 mod n, is always zero and would not need to be included.) - _M. F. Hasler_, Oct 21 2013
%t A048153 Table[Sum[PowerMod[k,2,n], {k,n-1}], {n,1,10000}] (* _Zak Seidov_, Nov 02 2011 *)
%o A048153 (Haskell)
%o A048153 a048153 = sum . a048152_row  -- _Reinhard Zumkeller_, Apr 29 2013
%o A048153 (PARI) a(n)=sum(k=1,n,k^2%n) \\ _Charles R Greathouse IV_, Oct 21 2013
%o A048153 (Python)
%o A048153 def A048153(n): return sum(k**2%n for k in range(1,n)) # _Chai Wah Wu_, Jun 02 2024
%Y A048153 Cf. A000330, A048152, A215573.
%K A048153 nonn
%O A048153 1,3
%A A048153 _Clark Kimberling_
%E A048153 Definition made more explicit by _M. F. Hasler_, Oct 21 2013