cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).

This page as a plain text file.
%I A048159 #32 May 07 2019 07:36:45
%S A048159 1,3,1,16,13,3,125,171,85,15,1296,2551,2005,735,105,16807,43653,47586,
%T A048159 26950,7875,945,262144,850809,1195383,924238,412650,100485,10395,
%U A048159 4782969,18689527,32291463,31818045,19235755,7113645,1486485,135135
%N A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).
%C A048159 An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
%C A048159 Row sums give A005263.
%H A048159 C. Flight, <a href="https://doi.org/10.1484/J.MSS.3.1335">How many stemmata?</a>, Manuscripta, 34 (1990), 122-128.
%H A048159 C. Flight, <a href="/A048159/a048159.pdf">How many stemmata?</a>, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
%H A048159 C. Flight, <a href="/A005263/a005263.pdf">Letter to N. J. A. Sloane, Nov 1990</a>
%H A048159 M. Josuat-Vergès, <a href="http://arxiv.org/abs/1310.7531">Derivatives of the tree function</a>, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
%H A048159 Lucas Randazzo, <a href="https://arxiv.org/abs/1905.02083">Arboretum for a generalization of Ramanujan polynomials</a>, arXiv:1905.02083 [math.CO], 2019.
%H A048159 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A048159 a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).
%e A048159 Triangle begins
%e A048159     1;
%e A048159     3,   1;
%e A048159    16,  13,   3;
%e A048159   125, 171,  85,  15;
%e A048159   ...
%t A048159 a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* _Jean-François Alcover_, Oct 03 2013 *)
%Y A048159 Cf. A005264, A048160, A052300, A052301, A052302, A052303.
%K A048159 nonn,easy,tabl,nice
%O A048159 2,2
%A A048159 _N. J. A. Sloane_
%E A048159 More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000