cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048242 Numbers that are not the sum of two abundant numbers (not necessarily distinct).

This page as a plain text file.
%I A048242 #37 Jul 20 2023 07:20:11
%S A048242 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,
%T A048242 28,29,31,33,34,35,37,39,41,43,45,46,47,49,51,53,55,57,59,61,63,65,67,
%U A048242 69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109
%N A048242 Numbers that are not the sum of two abundant numbers (not necessarily distinct).
%C A048242 a(1456) = 20161 is the last term.
%C A048242 a(38) = 46 is the largest even term. - _Alonso del Arte_, Sep 11 2016
%D A048242 Problem 13, ABACUS.
%D A048242 Thomas R. Parkin and Leon J. Lander, Abundant numbers, Aerospace Corporation, Los Angeles, 1964, 119 unnumbered pages. Copy deposited in UMT file.
%D A048242 Joe Roberts, Lure of the Integers, MAA Spectrum, 1992, p. 273, integer 20161.
%D A048242 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Book, 1986, p. 175, entry 20161.
%H A048242 T. D. Noe, <a href="/A048242/b048242.txt">Table of n, a(n) for n = 1..1456</a> (complete sequence)
%H A048242 F. A. E. Pirani, <a href="http://www.jstor.org/stable/2304999">Problems For Solution "E903"</a>, The American Mathematical Monthly, Vol. 57, No. 2, (February 1950), p. 113.
%H A048242 F. A. E. Pirani, Leo Moser and John Selfridge, <a href="http://www.jstor.org/stable/2307953">E903</a>, The American Mathematical Monthly, Vol. 57, No. 8. (October 1950), pp. 561-562.
%H A048242 Project Euler, <a href="https://projecteuler.net/problem=23">Non-abundant sums Problem 23</a>
%H A048242 Review of <a href="http://dx.doi.org/10.1090/S0025-5718-65-99950-3">Abundant Numbers by Thomas R. Parkin and Leon J. Lander</a>, Mathematics of Computation, Vol. 19, No. 90. (April 1965), p. 334.
%e A048242 12 is abundant, so 24=12+12 is not a term.
%o A048242 (PARI) setminus([1..20161], setbinop((x,y)->x+y, select(k->sigma(k,-1)>2,[1..16695]))) \\ _Charles R Greathouse IV_, Oct 10 2017
%Y A048242 Complement of A048260.
%Y A048242 Cf. A005101.
%K A048242 fini,nonn,full
%O A048242 1,2
%A A048242 _Jud McCranie_, Dec 11 1999