cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048273 Maximal number of distinct prime factors in binomial coefficients C(n,k) for k = 0,...,n.

This page as a plain text file.
%I A048273 #9 Aug 03 2014 14:01:16
%S A048273 0,0,1,1,2,2,2,2,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,7,8,8,7,7,8,8,
%T A048273 9,9,9,9,10,10,10,10,10,10,11,10,10,10,10,10,10,11,11,11,12,12,12,13,
%U A048273 13,13,13,13,13,12,13,14,14,14,14,15,15,14,14,14,15
%N A048273 Maximal number of distinct prime factors in binomial coefficients C(n,k) for k = 0,...,n.
%H A048273 T. D. Noe, <a href="/A048273/b048273.txt">Table of n, a(n) for n = 0..1000</a>
%e A048273 If n = 51 and k runs from 0 to 51, then a maximum of 11 distinct prime factors arise, for k = 20, 21, 22, 23, 28, 29, 30, 31.
%t A048273 Table[Max[Table[b = Binomial[n, k]; If[b == 1, 0, Length[FactorInteger[b]]], {k, 0, n}]], {n, 0, 100}] (* _T. D. Noe_, Apr 03 2012 *)
%Y A048273 Cf. A001405, A034973, A001221, A048571.
%K A048273 nonn
%O A048273 0,5
%A A048273 _Labos Elemer_