A048280 Length of longest run of consecutive quadratic residues mod prime(n).
2, 2, 3, 3, 3, 3, 5, 4, 5, 4, 4, 4, 5, 5, 5, 3, 5, 5, 6, 7, 9, 6, 7, 5, 9, 7, 7, 6, 5, 5, 7, 8, 6, 5, 4, 7, 6, 6, 6, 6, 6, 6, 7, 9, 7, 6, 7, 7, 7, 5, 6, 7, 13, 7, 6, 7, 8, 7, 10, 6, 9, 9, 7, 11, 9, 5, 8, 9, 8, 6, 6, 8, 9, 6, 8, 8, 8, 5, 7, 13, 8, 7, 7, 9, 10, 8, 8, 9, 8, 8, 11, 13, 8, 8, 10, 8, 9, 8, 10, 7, 9, 9, 10, 10, 7, 9
Offset: 1
Keywords
Examples
For n = 7, prime(7) = 17 has consecutive quadratic residues 15,16,0,1,2, and no longer sequence of consecutive quadratic residues, so a(7)=5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- P. Pollack and E. Treviño, The primes that Euclid forgot, Amer. Math. Monthly, 121 (2014), 433-437.
- Enrique Treviño, Corrigendum to “On the maximum number of consecutive integers on which a character is constant”, Mosc. J. Comb. Number Theory 7 (2017), no. 3, 1-2.
Programs
-
Maple
A:= proc(n) local P, res, nonres, nnr; P:= ithprime(n); res:= {seq(i^2,i=0..floor((P-1)/2)}; nonres:= {$1..P-1} minus res; nnr:= nops(nonres); max(seq(nonres[i+1]-nonres[i]-1,i=1..nnr-1),nonres[1]-nonres[-1]+P-1) end proc; A(1):= 2: seq(A(n),n=1..100); # Robert Israel, Jul 20 2014
Formula
a(n) < 2*sqrt(prime(n)) for n >= 1 (see Pollack and Treviño for n > 1). - Jonathan Sondow, Jul 20 2014
a(n) >= A002307(n). - Jonathan Sondow, Jul 20 2014
a(n) < 7 prime(n)^(1/4)log(prime(n)) for all n > 1, or a(n) < 3.2 prime(n)^(1/4)log(prime(n)) for n >= 10^13. - Enrique Treviño, Apr 16 2020
Extensions
Offset corrected to 1 and definition clarified by Jonathan Sondow Jul 20 2014
Comments