cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048285 Number of Dyck paths of length 2n with nondecreasing peaks.

This page as a plain text file.
%I A048285 #39 Mar 04 2024 15:02:31
%S A048285 1,1,2,4,9,21,51,126,316,800,2040,5230,13464,34773,90035,233590,
%T A048285 607011,1579438,4114014,10725109,27979704,73035818,190737623,
%U A048285 498320800,1302341411,3404552915,8902154847,23281653957,60897957049,159312797657
%N A048285 Number of Dyck paths of length 2n with nondecreasing peaks.
%C A048285 The name refers to weakly increasing peaks. The case of strictly increasing peaks is counted by A008930. - _David Callan_, Feb 18 2004
%C A048285 a(n) ~ 0.11997*[(3+sqrt(5))/2]^n (Theorem 2 of the Penaud-Roques paper). - _Emeric Deutsch_, Mar 05 2008
%C A048285 Row sums of A138155. - _Emeric Deutsch_, Mar 05 2008
%C A048285 For a constant 0.1199765127480778967304984... see A239528. - _Vaclav Kotesovec_, Mar 21 2014
%H A048285 Alois P. Heinz, <a href="/A048285/b048285.txt">Table of n, a(n) for n = 0..690</a> (terms n=1..300 from Vaclav Kotesovec)
%H A048285 Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 21.
%H A048285 Sergi Elizalde, <a href="https://arxiv.org/abs/2008.05669">Symmetric peaks and symmetric valleys in Dyck paths</a>, arXiv:2008.05669 [math.CO], 2020.
%H A048285 J. G. Penaud and O. Roques, <a href="https://dx.doi.org/10.1016/S0012-365X(01)00261-8">Génération de chemins de Dyck à pics croissants</a>, Discrete Mathematics, Vol. 246, no. 1-3 (2002), 255-267.
%F A048285 G.f.: 1 + Sum_{n>=0} ((-1)^n x^{2n+1}(1-x)) / (Product_{i=1...n+1} ((1-x)(1-x^i)-x)).
%F A048285 Conjectural g.f.: Sum_{n>=0} (x*(1 - x))^n/( Product_{i=2..n+1} (1 - 2*x + x^i) ) (checked up to x^50). - _Peter Bala_, Mar 31 2017
%e A048285 a(3)=4 because we have UDUDUD, UDUUDD, UUDUDD and UUUDDD, where U=(1,1) and D=(1,-1).
%p A048285 g:= 1+sum((-1)^n*z^(2*n+1)*(1-z)/(product((1-z)*(1-z^i)-z,i=1..n+1)), n=0..40): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=0..30); # _Emeric Deutsch_, Mar 05 2008
%p A048285 # second Maple program:
%p A048285 b:= proc(x, y, k, t) option remember; `if`(x=0, 1, `if`(y>0,
%p A048285       `if`(t=1 and y>k, 0, b(x-1, y-1, `if`(t=1, min(k, y),
%p A048285          k), 0)), 0) +`if`(y<x-1, b(x-1, y+1, k, 1), 0))
%p A048285     end:
%p A048285 a:= n-> b(2*n, 0, n, 0):
%p A048285 seq(a(n), n=0..35);  # _Alois P. Heinz_, Jun 13 2017
%p A048285 # third Maple program:
%p A048285 b:= proc(n, i) option remember; `if`(n=0, 1, add(
%p A048285       binomial(i, j)*add(b(n-2-(i-j)*2-2*t, i-j+t),
%p A048285       t=0..n/2+j-i-1), j=0..i))
%p A048285     end:
%p A048285 a:= n-> b(2*n, 0):
%p A048285 seq(a(n), n=0..35);  # _Alois P. Heinz_, Jun 13 2017
%t A048285 Table[SeriesCoefficient[Sum[(-1)^k*x^(2*k+1)*(1-x)/Product[(1-x)*(1-x^i)-x,{i,1,k+1}],{k,0,n}],{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%Y A048285 Cf. A138155, A239528.
%K A048285 nonn,nice
%O A048285 0,3
%A A048285 Olivier Roques (roques(AT)labri.u-bordeaux.fr)
%E A048285 More terms from _Emeric Deutsch_, Mar 05 2008
%E A048285 a(0)=1 prepended by _Alois P. Heinz_, Jan 31 2017