cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048288 Number of prime factors counted with multiplicity of the reverse concatenation of numbers from 1 to n.

This page as a plain text file.
%I A048288 #14 Sep 04 2021 09:57:08
%S A048288 0,2,2,2,3,2,2,4,5,3,2,3,3,4,6,4,7,10,4,5,4,5,4,5,6,9,9,5,7,8,3,6,5,7,
%T A048288 9,8,4,3,6,5,8,6,3,8,7,5,7,7,3,6,3,7,12,14,3,5,4,6,3,3,5,9,6,6,7,7,4,
%U A048288 8,8,4,9,5,7,8,10,3,7,6,4,9,10,1,3,8,3
%N A048288 Number of prime factors counted with multiplicity of the reverse concatenation of numbers from 1 to n.
%H A048288 Sean A. Irvine, <a href="/A048288/b048288.txt">Table of n, a(n) for n = 1..106</a>
%H A048288 Patrick De Geest, <a href="http://www.worldofnumbers.com/revfact.htm">Reversed Smarandache Concatenated Numbers</a>
%H A048288 M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/michafleuren.htm">Factors and primes of Smarandache sequences</a>.
%H A048288 M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/micha.txt">Smarandache Factors and Reverse factors</a>
%H A048288 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_008.htm">Puzzle 8. Primes by Listing</a>, The Prime Puzzles and Problems Connection.
%F A048288 a(n) = A001222(A000422(n)). - _Michel Marcus_, Jun 14 2021
%e A048288 21 = 3*7 so a(2) = 2; 321 = 3*107 so a(3) = 2; 4321 = 29*149 so a(4) = 2; etc.
%e A048288 a(1)=0 since 1 has no prime factors.
%t A048288 Join[{0},Table[PrimeOmega[FromDigits[Flatten[IntegerDigits[Range[i,1,-1]]]]],{i,2,36}]] (* _Jayanta Basu_, May 30 2013 *)
%Y A048288 Cf. A000422, A001222, A046460, A046461, A046468, A050679, A050680, A050681, A050682.
%K A048288 nonn,base
%O A048288 1,2
%A A048288 Paul Jasper (jasperpaul(AT)hotmail.com)
%E A048288 Offset and a(19) corrected and more terms from _Sean A. Irvine_, Jun 13 2021
%E A048288 Edited by _N. J. A. Sloane_, Sep 04 2021