This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048344 #30 Aug 27 2025 03:56:29 %S A048344 12,21,102,112,122,201,211,221,1002,1011,1012,1021,1022,1101,1102, %T A048344 1112,1121,1201,1202,1211,2001,2011,2012,2021,2101,2102,2111,2201, %U A048344 10002,10011,10012,10021,10022,10102,10111,10112,10121,10202,10211,11001 %N A048344 a(n) * a(n)_reversed is a palindrome (and a(n) is not palindromic). %C A048344 Does any term in this sequence have any digit greater than 2? - _Harvey P. Dale_, Nov 05 2011 %H A048344 Reinhard Zumkeller, <a href="/A048344/b048344.txt">Table of n, a(n) for n = 1..1000</a> %H A048344 Patrick De Geest, <a href="https://www.worldofnumbers.com/reversal.htm">Palindromic Products of Non Palindromic Integers and their Reversals </a> %e A048344 E.g. 10021 * 12001 = 120262021 is a palindrome. %t A048344 palQ[n_]:=Module[{idn=IntegerDigits[n],ridn,idn2},ridn=Reverse[idn]; idn2 = IntegerDigits[ n FromDigits[ridn]];idn!=ridn&&idn2==Reverse[idn2]]; Select[ Range[11100],palQ] (* _Harvey P. Dale_, Nov 05 2011 *) %t A048344 Select[Range[12000],!PalindromeQ[#]&&PalindromeQ[# IntegerReverse[#]]&] (* _Harvey P. Dale_, Jul 10 2023 *) %o A048344 (Haskell) %o A048344 a048344 n = a048344_list !! (n-1) %o A048344 a048344_list = filter f a029742_list where %o A048344 f x = a136522 (x * a004086 x) == 1 %o A048344 -- _Reinhard Zumkeller_, Oct 09 2011 %o A048344 (Python) %o A048344 A048344_list = [] %o A048344 for n in range(1,10**5): %o A048344 s = str(n) %o A048344 s2 = str(n)[::-1] %o A048344 if s != s2: %o A048344 s3 = str(n*int(s2)) %o A048344 if s3 == s3[::-1]: %o A048344 A048344_list.append(n) # _Chai Wah Wu_, Sep 08 2014 %Y A048344 Cf. A048343. %Y A048344 Cf. A004086, A136522, A029742. %K A048344 nonn,base,nice,changed %O A048344 1,1 %A A048344 _Patrick De Geest_, Feb 15 1999 %E A048344 Offset corrected by _Reinhard Zumkeller_, Oct 09 2011