cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048375 Numbers whose square is a concatenation of two nonzero squares.

This page as a plain text file.
%I A048375 #26 Jul 13 2021 02:38:53
%S A048375 7,13,19,35,38,41,57,65,70,125,130,190,205,223,253,285,305,350,380,
%T A048375 410,475,487,570,650,700,721,905,975,985,1012,1201,1250,1265,1300,
%U A048375 1301,1442,1518,1771,1900,2024,2050,2163,2225,2230,2277,2402,2435,2530,2850
%N A048375 Numbers whose square is a concatenation of two nonzero squares.
%C A048375 Leading zeros not allowed, trailing zeros are.
%C A048375 This means that, e.g., 95 is not in the sequence although 95^2 = 9025 could be seen as concatenation of 9 and 025 = 5^2. - _M. F. Hasler_, Jan 25 2016
%H A048375 Giovanni Resta, <a href="/A048375/b048375.txt">Table of n, a(n) for n = 1..3000</a>
%F A048375 a(n) = sqrt(A039686(n)). - _M. F. Hasler_, Jan 25 2016
%e A048375 1771^2 = 3136441 = 3136_441 and 3136 = 56^2, 441 = 21^2.
%t A048375 squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n^2], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[{b}]]}]; Select[Range[3000], okQ] (* _Jean-François Alcover_, Oct 20 2011, updated Dec 13 2016 *)
%o A048375 (PARI) is_A048375(n)={my(p=100^valuation(n,10));n*=n;while(n>p*=10,issquare(n%p)&&issquare(n\p)&&n%p*10>=p&&return(1))} \\ _M. F. Hasler_, Jan 25 2016
%o A048375 (Python)
%o A048375 from math import isqrt
%o A048375 def issquare(n): return isqrt(n)**2 == n
%o A048375 def ok(n):
%o A048375   d = str(n)
%o A048375   for i in range(1, len(d)):
%o A048375     if d[i] != '0' and issquare(int(d[:i])) and issquare(int(d[i:])):
%o A048375       return True
%o A048375   return False
%o A048375 print([r for r in range(2851) if ok(r*r)]) # _Michael S. Branicky_, Jul 13 2021
%Y A048375 Cf. A039686, A048646.
%K A048375 nonn,easy,nice,base
%O A048375 1,1
%A A048375 _Patrick De Geest_, Mar 15 1999