This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048411 #30 Apr 22 2025 16:26:06 %S A048411 0,1,4,9,121,676,12321,1234321,123454321,12345654321,1234567654321, %T A048411 123456787654321,12345678987654321 %N A048411 Squares whose consecutive digits differ by 1. %C A048411 a(14), if it exists, is > 10^34. - _Lars Blomberg_, Nov 25 2016 %C A048411 Is it true that all terms are palindromes? - _Chai Wah Wu_, Apr 06 2018 %C A048411 a(14), if it exists, is > 10^52. - _Michael S. Branicky_, Apr 22 2025 %F A048411 a(n) = A048412(n)^2. %t A048411 Select[Range[0, 10^7]^2, Or[# == 0, IntegerLength@ # == 1, Union@ Abs@ Differences@ IntegerDigits@ # == {1}] &] (* _Michael De Vlieger_, Nov 25 2016 *) %o A048411 (Haskell) %o A048411 a048411 n = a048411_list !! (n-1) %o A048411 a048411_list = filter ((== 1) . a010052) a033075_list %o A048411 -- _Reinhard Zumkeller_, Feb 21 2012 %o A048411 (Python) %o A048411 from sympy.ntheory.primetest import is_square %o A048411 def gen(d, s=None): %o A048411 if d == 0: yield tuple(); return %o A048411 if s == None: %o A048411 yield from [(i, ) + g for i in range(1, 10) for g in gen(d-1, s=i)] %o A048411 else: %o A048411 if s > 0: yield from [(s-1, ) + g for g in gen(d-1, s=s-1)] %o A048411 if s < 9: yield from [(s+1, ) + g for g in gen(d-1, s=s+1)] %o A048411 def afind(maxdigits): %o A048411 print(0, end=", ") %o A048411 for d in range(1, maxdigits+1): %o A048411 for g in gen(d, s=None): %o A048411 t = int("".join(map(str, g))) %o A048411 if is_square(t): print(t, end=", ") %o A048411 afind(17) # _Michael S. Branicky_, Sep 26 2021 %Y A048411 Cf. A002477, A048412. %Y A048411 Cf. A010052; intersection of A033075 and A000290. %K A048411 nonn,base,more %O A048411 1,3 %A A048411 _Patrick De Geest_, Apr 15 1999