This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048487 #36 Oct 03 2023 19:06:34 %S A048487 1,6,16,36,76,156,316,636,1276,2556,5116,10236,20476,40956,81916, %T A048487 163836,327676,655356,1310716,2621436,5242876,10485756,20971516, %U A048487 41943036,83886076,167772156,335544316,671088636,1342177276,2684354556,5368709116,10737418236,21474836476 %N A048487 a(n) = T(4,n), array T given by A048483. %C A048487 Row sums of triangle A131113. - _Gary W. Adamson_, Jun 15 2007 %C A048487 a(n) = sum of (n+1)-th row terms of triangle A134636. This sequence is the binomial transform of 1, 5, 5, (5 continued). - _Gary W. Adamson_, Nov 04 2007 %C A048487 Row sums of triangle A135856. - _Gary W. Adamson_, Dec 01 2007 %H A048487 Vincenzo Librandi, <a href="/A048487/b048487.txt">Table of n, a(n) for n = 0..1000</a> %H A048487 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A048487 a(n) = 5*2^n - 4. - _Henry Bottomley_, May 29 2001 %F A048487 a(n) = 2*a(n-1) + 4 for n > 0 with a(0) = 1. - _Paul Barry_, Aug 25 2004 %F A048487 From _Colin Barker_, Sep 13 2012: (Start) %F A048487 a(n) = 3*a(n-1) - 2*a(n-2) for n >= 2. %F A048487 G.f.: (1 + 3*x)/((1 - x)*(1 - 2*x)). (End) %F A048487 a(n) = A123208(2*n). - _Philippe Deléham_, Apr 15 2013 %F A048487 E.g.f.: exp(x)*(5*exp(x) - 4). - _Stefano Spezia_, Oct 03 2023 %t A048487 a=1; lst={a}; k=5; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 15 2008 *) %t A048487 a=6; lst={1, a}; k=10; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 17 2008 *) %o A048487 (Magma)[5*2^n-4: n in [0..30]]; // _Vincenzo Librandi_, Sep 23 2011 %Y A048487 Cf. A010716 (n-th difference of a(n), a(n-1), ..., a(0)). %Y A048487 Diagonal of A062001. %Y A048487 A column of A119726. %Y A048487 Cf. A048483, A123208, A131113, A134636, A135856. %K A048487 nonn,easy %O A048487 0,2 %A A048487 _Clark Kimberling_