This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048506 #33 Sep 08 2022 08:44:57 %S A048506 1,2,7,25,81,241,673,1793,4609,11521,28161,67585,159745,372737,860161, %T A048506 1966081,4456449,10027009,22413313,49807361,110100481,242221057, %U A048506 530579457,1157627905,2516582401,5452595201,11777605633,25367150593,54492397569,116769423361 %N A048506 a(n) = T(0,n), array T given by A048505. %C A048506 n-th difference of a(n), a(n-1), ..., a(0) is (1, 4, 9, 16, 25, ...). %C A048506 Similar to A000697 in so far as it can be seen as the transform of 1, 1, 4, 9, 16, ... by a variant of the boustrophedon algorithm (see the Sage implementation). - _Peter Luschny_, Oct 30 2014 %H A048506 Vincenzo Librandi, <a href="/A048506/b048506.txt">Table of n, a(n) for n = 0..2000</a> %H A048506 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,20,-8). %F A048506 a(n) = n*(n+1)*2^(n-2) + 1 = A001788(n) + 1. - _Ralf Stephan_, Jan 16 2004 %F A048506 a(n) = 7*a(n-1)-18*a(n-2)+20*a(n-3)-8*a(n-4). - _Colin Barker_, Nov 26 2014 %F A048506 G.f.: -(8*x^3-11*x^2+5*x-1) / ((x-1)*(2*x-1)^3). - _Colin Barker_, Nov 26 2014 %t A048506 LinearRecurrence[{7,-18,20,-8}, {1,2,7,25}, 30] (* _Jean-François Alcover_, Jun 11 2019 *) %o A048506 (Magma) [n*(n+1)*2^(n-2) + 1: n in [0..30]]; // _Vincenzo Librandi_, Sep 26 2011 %o A048506 (Sage) %o A048506 def sq(): %o A048506 yield 1 %o A048506 for n in PositiveIntegers(): %o A048506 yield n*n %o A048506 def bous_variant(f): %o A048506 k = 0 %o A048506 am = next(f) %o A048506 a = [am] %o A048506 while True: %o A048506 yield am %o A048506 am = next(f) %o A048506 a.append(am) %o A048506 for j in range(k,-1,-1): %o A048506 am += a[j] %o A048506 a[j] = am %o A048506 k += 1 %o A048506 b = bous_variant(sq()) %o A048506 print([next(b) for _ in range(26)]) # _Peter Luschny_, Oct 30 2014 %o A048506 (PARI) Vec(-(8*x^3-11*x^2+5*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ _Colin Barker_, Nov 26 2014 %Y A048506 Cf. A048505, A000697. %K A048506 nonn,easy %O A048506 0,2 %A A048506 _Clark Kimberling_