This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048574 #27 Feb 07 2021 11:57:22 %S A048574 1,4,10,22,43,80,141,240,397,640,1011,1568,2395,3604,5360,7876,11460, %T A048574 16510,23588,33418,47006,65640,91085,125596,172215,234820,318579, %U A048574 430060,577920,773130,1030007,1366644,1806445,2378892,3121835,4082796 %N A048574 Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 ... (A000041). %C A048574 Number of proper partitions of n into parts of two kinds (i.e. both kinds must be present). - _Franklin T. Adams-Watters_, Feb 08 2006 %H A048574 Reinhard Zumkeller, <a href="/A048574/b048574.txt">Table of n, a(n) for n = 2..5000</a> %H A048574 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=804">Encyclopedia of Combinatorial Structures 804</a> %F A048574 From _Franklin T. Adams-Watters_, Feb 08 2006: (Start) %F A048574 a(0) = 0, a(n) = A000712(n)-2*A000041(n) for n>0. %F A048574 a(n) = Sum_{k=1..n-1} A000041(k)*A000041(n-k). %F A048574 G.f.: ((Product_{k>0} 1/(1-x^k))-1)^2 = (exp(Sum_{k>0} (x^k/(1-x^k)/k))-1)^2. (End) %F A048574 a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)). - _Vaclav Kotesovec_, Mar 10 2018 %e A048574 a(4) = 22 because (1,2,3,5)*(5,3,2,1) = 5 + 6 + 6 + 5 = 22 %p A048574 spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # _Franklin T. Adams-Watters_, Feb 08 2006 %p A048574 # second Maple program: %p A048574 a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]): %p A048574 seq(a(n), n=2..40); # _Alois P. Heinz_, May 26 2018 %t A048574 a[n_] := First[ ListConvolve[ pp = Array[ PartitionsP, n], pp]]; Table[ a[n], {n, 1, 36}] (* _Jean-François Alcover_, Oct 21 2011 *) %t A048574 Table[ListConvolve[PartitionsP[Range[n]],PartitionsP[Range[n]]],{n,40}]// Flatten (* _Harvey P. Dale_, Oct 29 2020 *) %o A048574 (Haskell) %o A048574 a048574 n = a048574_list !! (n-2) %o A048574 a048574_list = f (drop 2 a000041_list) [1] where %o A048574 f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs) %o A048574 -- _Reinhard Zumkeller_, Nov 09 2015 %o A048574 (PARI) a(n) = sum(k=1, n-1, numbpart(k)*numbpart(n-k)); \\ _Michel Marcus_, Dec 11 2016 %Y A048574 Cf. A000041, A000712, A023626. %Y A048574 Essentially the same as A052837. %Y A048574 Cf. A122768. %Y A048574 Column k=2 of A060642. %K A048574 easy,nice,nonn %O A048574 2,2 %A A048574 _Alford Arnold_ %E A048574 More terms from Larry Reeves (larryr(AT)acm.org), Sep 29 2000