A048582 Pisot sequence L(4,9).
4, 9, 21, 49, 115, 270, 634, 1489, 3498, 8218, 19307, 45359, 106565, 250361, 588192, 1381884, 3246565, 7627402, 17919636, 42099965, 98908653, 232373629, 545933059, 1282602102, 3013314774, 7079409829, 16632196530, 39075285666, 91802543767, 215678705823
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
Crossrefs
See A008776 for definitions of Pisot sequences.
Programs
-
Mathematica
a[n_] := a[n] = Switch[n, 0, 4, 1, 9, _, Ceiling[a[n-1]^2/a[n-2]]]; a /@ Range[0, 29] (* Jean-François Alcover, Oct 22 2019 *)
-
PARI
pisotL(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2])); a } pisotL(50, 4, 9) \\ Colin Barker, Aug 07 2016
Formula
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) + a(n-4) - 2*a(n-5) + a(n-6) - a(n-7) (conjectured). Recurrence is satisfied for at least 760000 terms. - Chai Wah Wu, Jul 25 2016
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016