This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048603 #27 Sep 24 2018 16:53:13 %S A048603 1,12,160,40320,71680,1277337600,79705866240,167382319104000, %T A048603 91055981592576000,62282291409321984000,4024394214140805120000, %U A048603 5882770031248492462080000,9076273762497674084352000000 %N A048603 Denominators of coefficients in function a(x) such that a(a(x)) = sin x. %C A048603 Also denominators of coefficients in function a(x) such that a(a(x)) = sinh x. %C A048603 A recursion exists for coefficients, but is too complicated to process without a computer algebra system. %D A048603 W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999 %D A048603 W. C. Yang, Composition equations, preprint, 1999 %H A048603 Dmitry Kruchinin, Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$</a>, arXiv:1302.1986 %H A048603 W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Math., 222 (2000), 235-245. %e A048603 x - x^3/12 - x^5/160 ... %t A048603 n = 13; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[ %t A048603 CoefficientList[Series[a@a@x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}] %t A048603 (CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Denominator // Partition[#, 2] &)[[All, 2]] %t A048603 (* _Jean-François Alcover_, May 05 2011 *) %Y A048603 Cf. A048602, A048606. %K A048603 frac,nonn,nice %O A048603 0,2 %A A048603 Winston C. Yang (yang(AT)math.wisc.edu) %E A048603 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 15 2007