cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048606 Numerators of coefficients in function a(x) such that a(a(x)) = sinh(x).

This page as a plain text file.
%I A048606 #14 Apr 04 2014 04:36:26
%S A048606 1,1,-1,53,-23,92713,-742031,-594673187,329366540401,-104491760828591,
%T A048606 1508486324285153,582710832978168221,-1084662989735717135537,
%U A048606 431265609837882130202597,784759327625761394688977441
%N A048606 Numerators of coefficients in function a(x) such that a(a(x)) = sinh(x).
%C A048606 A recursion exists for coefficients, but is too complicated to use without a computer algebra system.
%D A048606 W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
%D A048606 W. C. Yang, Composition equations, preprint, 1999
%H A048606 W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Math., 222 (2000), 235-245.
%e A048606 x + x^3/12 - x^5/160 + ...
%Y A048606 Cf. A048603. Apart from signs, the same sequence as A048602.
%K A048606 frac,sign,nice
%O A048606 0,4
%A A048606 Winston C. Yang (yang(AT)math.wisc.edu)