This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048611 #24 Apr 05 2021 13:33:03 %S A048611 1,6,20,56,156,340,2444,4440,167000,55556,267444,333400,132687920, %T A048611 5555556,10731400,40938800,2682647040,333334000,555555555555555556, %U A048611 3334367856,11034444280,35595935980,5555555555555555555556 %N A048611 Find smallest pair (x,y) such that x^2 - y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of x. %C A048611 Least solutions for 'Difference between two squares is a repunit of length n'. %D A048611 David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4. %H A048611 H. Havermann, <a href="http://chesswanks.com/pxp/RSD.html">Repunit Square Differences (gives many more terms)</a> %F A048611 a(n) = (A033677((10^n-1)/9)+A033676((10^n-1)/9))/2. - _Chai Wah Wu_, Apr 05 2021 %e A048611 For n=2, 6^2 - 5^2 = 11. %t A048611 s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[x, n_] -> n], 1] %o A048611 (Python) %o A048611 from sympy import divisors %o A048611 def A048611(n): %o A048611 d = divisors((10**n-1)//9) %o A048611 l = len(d) %o A048611 return (d[l//2]+d[(l-1)//2])//2 # _Chai Wah Wu_, Apr 05 2021 %Y A048611 Cf. A048612, A000042, A002275, A033676, A033677. %K A048611 nonn,nice %O A048611 1,2 %A A048611 _Felice Russo_ %E A048611 Corrected and extended by _Patrick De Geest_, Jun 15 1999 %E A048611 More terms from _Hans Havermann_, Jul 02 2000 %E A048611 Offset corrected by _Chai Wah Wu_, Apr 05 2021