This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048617 #39 Feb 16 2025 08:32:40 %S A048617 2,2,8,72,1152,28800,1036800,50803200,3251404800,263363788800, %T A048617 26336378880000,3186701844480000,458885065605120000, %U A048617 77551576087265280000,15200108913103994880000,3420024505448398848000000,875526273394790105088000000,253027093011094340370432000000 %N A048617 a(n) = 2*(n!)^2. %C A048617 a(n) = automorphism group order for the complete bipartite graph K_{n,n}. - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001 %C A048617 For n > 1, also the order of automorphism group for the n X n rook graph. - _Eric W. Weisstein_, Jun 20 2017 %C A048617 Also the number of (directed) Hamiltonian paths in K_{n,n}. - _Eric W. Weisstein_, Jul 15 2011 %C A048617 For n>=1, a(n) is the number of ways to arrange n men and n women in a line so that no two people of the same gender are adjacent. - _Geoffrey Critzer_, Aug 24 2013 %C A048617 Also the number of (directed) Hamiltonian paths in the (n+1)-barbell graph. - _Eric W. Weisstein_, Dec 16 2013 %H A048617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphAutomorphism.html">Graph Automorphism</a> %H A048617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarbellGraph.html">Barbell Graph</a> %H A048617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a> %H A048617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a> %H A048617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %F A048617 a(n) = 2*A001044(n) %p A048617 seq(mul(n!*k!, k=1..2), n=0..17); # _Zerinvary Lajos_, Jul 01 2007 %t A048617 2(Range[0,20]!)^2 (* _Harvey P. Dale_, Jun 21 2011 *) %t A048617 Table[2 (n!)^2, {n, 0, 20}] (* _Vincenzo Librandi_, Feb 22 2016 *) %o A048617 (Magma) [2*Factorial(n)^2: n in [0..30]]; // _Vincenzo Librandi_, Feb 22 2016 %Y A048617 Equals 2 * A001044. %K A048617 nonn %O A048617 0,1 %A A048617 _N. J. A. Sloane_